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Abstract

We present the design and the first results of a program of optical spectroscopy of

galaxies in clusters detected in South Pole Telescope (SPT) data using the Sunyaev-

Zel’dovich (SZ) effect, the spectral distortion of the cosmic microwave background

from galaxy clusters. We use resampling for an empirical determination of the un-

certainty in cluster velocity dispersion calculated from galaxy redshift measurements.

We discuss outstanding questions that need answering in order to reach the goal of

using cluster velocity dispersion measurements to calibrate scaling relation between

the SZ observable and the cluster mass.
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Chapter 1

Introduction and summary

The present chapter provides essential background information about the physical

properties of clusters of galaxies and their relation to cosmological studies, before

summarizing the structure and results of this thesis.

When observed at optical wavelengths, a cluster of galaxies appears as a gravita-

tionally bound group of galaxies. For instance, Figure 1.1 shows a false-color image of

SPT-CL J0438-5419 (Williamson et al., 2011), a massive galaxy cluster at z = 0.422.

The large, diffuse galaxy at the center and the objects surrounding it which have

the same yellow color are galaxies associated with the cluster. Large — or “rich” —

galaxy clusters have hundreds of member galaxies, and the possible number of mem-

bers for a cluster spans the whole range all the way down to a handful of galaxies.

Those small — or “poor” — clusters are often called “groups”, although no discrete

physical distinction exists between groups and larger clusters.
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Chapter 1: Introduction and summary

Figure 1.1: Optical image and SZ contours of SPT-CL J0438-5419 (Williamson et al.,
2011), a massive South Pole Telescope (SPT) cluster at z = 0.422. The R, G, and
B channels are respectively i-, r- and g-filter images taken with MOSAIC-II on the
CTIO Blanco 4-meter telescope. The contours show the SZ decrement signal-to-noise
ratio, as observed in the SPT CMB observations.
Image credit: adapted from Williamson et al. (2011).

Clusters were first described – and named – by the observation of their galaxies; see

Biviano (2000) for a history of early optical cluster studies. It is now well established

that most of the baryonic matter in a cluster resides not in its galaxies but in a
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Chapter 1: Introduction and summary

hot, large halo (or large enveloping volume) of intracluster gas. The mass budget of

the cluster is in turn dominated by dark matter, which accounts for about 85% of a

cluster’s mass. We will look at those different components in a logical, if ahistorical

order, starting with the dark matter, then moving on to the gas, and finishing with

the galaxies. Voit (2005) and Allen et al. (2011) are good recent reviews of galaxy

cluster properties and cosmological implications.

1.1 Dark matter, the growth of structure, and cos-

mology with clusters

The picture of the evolution of large-scale structure and the formation of clusters

of galaxies in the ΛCDM concordance cosmology is that the matter distribution in

the early universe was very smooth and its thermal state homogeneous, as evidenced

by the Cosmic Microwave Background (CMB). There were small density perturba-

tions, seen as temperature fluctuations of order 10−5 in the CMB. With time, these

overdense regions accreted more matter and grew via gravity; the largest overdensity

regions evolved into clusters of galaxies. This collapse process is dominated by dark

matter and has been studied in dark-matter (gravity only) N-body simulations.

Defining mass

The overdensities or clusters do not have a discrete physical boundary, therefore

there are different ways to define their characteristic mass and radius. We will define

R∆c as the radius from the cluster center within which the average density is ∆

3



Chapter 1: Introduction and summary

times the critical density (hence the subscript c) at the cluster redshift, ρcrit(z) =

3H2(z)/8πG, where H(z) is the Hubble expansion parameter. Then we define M∆c

as the mass contained within R∆c. R500c and M500c are most commonly used in the

literature for gas-based mass measurements, like those based on X-ray or Sunyaev-

Zel’dovich (SZ) observations (see Section 1.2). R200c and M200c are more appropriate

for the radius probed by optical studies, velocity dispersions and weak lensing. The

latter is closer to, but still smaller than the “virial radius”, the radius within which

the matter is in equilibrium with the potential and its kinetic and potential energy

are related via the so-called virial theorem. The virial radius can be calculated to be

R178c in a spherical top-hat collapse model. Many publications call R200c the “virial

radius”1.

The cluster mass function

The abundance of galaxy clusters is described by the cluster mass function (Press

& Schechter, 1974), which we will write nM(M, z); it gives the number of overdensities

with a mass greater than M per unit volume at redshift z. It can be used to construct

observables such as the number of clusters in an observable cosmological volume above

a given mass. The cluster mass function is dependent on cosmology, and therefore its

measurement can be used to derive empirical constraints on cosmological parameters.

As far as dark energy is concerned, this can be understood in the following way:

clusters grow by accretion through gravity; dark energy counteracts gravity on very

1An alternative definition of the overdensity radius sometimes used in the literature is with respect
to the mean or background density (called either R∆b or R∆m). An alternative definition of “virial
radius” is R180m; R200c < R178c < R180m but their values are similar. Many publications omit the
subscripts b, m or c altogether.
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Chapter 1: Introduction and summary

large scales; therefore the accretion will happen at different rates depending on the

properties of dark energy.

This overdensity growth process and the cluster mass function have been studied

in cosmological N-body simulations of dark matter particles, notably in Tinker et al.

(2008). Tinker et al. (2008) parametrize the cluster mass function in such a way that it

is a factor that depends on cosmology (i.e., the ΛCDM cosmological parameters) times

a factor (f(σ), see below) that is a function of redshift and overdensity2 number ∆,

but independent of the cosmological parameters. That is the important part because

it makes calculating the cluster mass function as a function of cosmology as simple

as can be, simple enough to include marginalization over cosmology where cluster

counts are needed. That is really all that is needed for the context, but being a

bit more precise about what these statements mean, we define the variance of linear

perturbations as

σ2(M, z) =

∫
P (k)Ŵ (kRM)k2dk, (1.1)

where P (k) is the linear matter power spectrum, and Ŵ is the Fourier transform of

a top-hat window function of mass-related radius

RM =

(
3M

4πρmean(z)

)1/3

. (1.2)

Then the cluster mass function is parameterized in Tinker et al. (2008) as

dn

dM
= f(σ)

ρmean(z)

M

d lnσ−1

dM
, (1.3)

where

f(σ) = A

[(σ
b

)−a
+ 1

]
e−c/σ

2

. (1.4)

2Tinker uses the mean density instead of the critical density: ρmean(z) = ΩM (z)ρcrit(z)
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Chapter 1: Introduction and summary

The value of the parameters A, a, b and c that go into f(σ) have been fitted in the

simulations, as a function of ∆ and z, and Tinker et al. (2008) offers simple fitting

functions that reproduce the numerical values of f(σ) to an accuracy of 2%.

As explained before, f(σ) encodes computationally intensive, complicated but

cosmology-independent aspects of the cluster mass function, while the rest of dn/dM

is a more tractable function of the ΛCDM cosmological parameters.

Scaling relations

An observable property ζ of clusters of galaxies, for example the velocity dispersion

or the SPT SZ significance (see Section 1.2.2), can be related to the cluster mass for

a given ∆ by a scaling relation, of the form

ζ = A

(
M∆

M0

)B
f(z), (1.5)

where M0 is a mass pivot, a typical mass for the range where the scaling relation was

fit, and f(z) is a redshift-evolution function.

Often, f(z) is related to H(z), the Hubble expansion parameter, therefore

ζ = A

(
M500c

M0

)B (
H(z)

H(z0)

)C
, (1.6)

where z0 is a redshift pivot, and we picked ∆ = M500c for concreteness.

An essential assumption of this parametrization is the the residuals are lognormal.

To express this with logarithmic scaling:

ln ζ = lnA+B ln

(
M500c

M0

)
+ C ln

(
H(z)

H(z0)

)
+N (0, D2) (1.7)

where N (0, D2) is a normal random variable3. The constant D is called the scatter;

3this notation is correct if we think of ζ and 500c as random variables
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Chapter 1: Introduction and summary

sometimes, in loose language, the actual realizations of this normal random variable

are called scatter.

The scatter is often quoted in percent, meaning that D = 0.13 will be called “13%

scatter”. It does represent, roughly, a 13% variation in mass:

ln(M/M0) = ln(1.0)± 0.13 (1.8)

⇒M/M0 = eln(1.0)±0.13 = eln(1.0)e±0.13 (1.9)

= 1.0(1± 0.13 +
0.132

2
+ . . .) (1.10)

' 1.0(1± 0.13) (1.11)

The higher-order terms make this loose but standard language less precise when

we are dealing with larger scatter and the higher-order terms cannot be ignored. The

mismatch between the two interpretations (i.e. as D, or as a mass percentage) is 0.02

for 20% scatter, and 0.06 for 35% scatter.

Cosmological fit

Generally, the relationship between cluster observable and mass depends on cos-

mological parameters through the H(z) evolution parameter, and also sometimes

through the angular diameter distance DA(z), which is the conversion factor between

observed angular size and physical size, if a physical radius is used for defining the

observable, as is the case with the X-ray temperature and YX . Therefore the scaling

relation has to be fit simultaneously with the cosmological parameters; for cosmol-

ogy with cluster counts, this is usually done via an MCMC (Vikhlinin et al., 2009b;

Mantz et al., 2010; Vanderlinde et al., 2010) . In the case of South Pole Telescope

(SPT; see Section 1.2.2) analysis, a modified version of CosmoMC (Lewis & Bridle,

7



Chapter 1: Introduction and summary

2002) jointly fits CMB data (from WMAP and SPT), cluster counts, and the cluster

scaling relations, with priors set from simulations and low-z studies (Benson et al.,

2013; Reichardt et al., 2013).

1.2 The hot gas

While most (about 85%) of the mass of any cluster is thought to reside in dark

matter, about 90% of the cluster’s baryons reside not in galaxies, but in an extended,

diffuse halo of gas which is heated up to high temperatures (several to many keV

for the most massive clusters) by the dark-matter halo potential. The gas produces

X-ray emission via thermal bremsstrahlung, which has been observed for many galaxy

clusters by space-based X-ray telescopes. X-ray studies of galaxy clusters is an im-

portant and mature field of extragalactic astronomy; see Andersson et al. (2011) and

references therein.

1.2.1 The Sunyaev-Zel’dovich effect

In addition to X-ray emission, the hot gas component gives rise to the Sunyaev-

Zel’dovich (SZ; Sunyaev & Zel’dovich, 1972) effect. A fraction of the cold photons

from the cosmic microwave background (CMB) interact with the hot electrons of

the gas (via inverse Compton scattering). As the simple comparison of the energies

involved would indicate, after the interaction, the photon has increased its energy.

The net effect is that the cluster changes the spectrum of the scattered CMB, where

the net number of photons in an energy range is decreased, and the missing photons

enhance the signal at higher frequencies. The resulting spectral distortion for a sim-

8



Chapter 1: Introduction and summary

ulated massive cluster is shown in Figure 1.2; in the case of that cluster, the intensity

of the SZ effect signal is of order 5× 10−4 times the blackbody spectrum component

of the CMB.

More precisely, the effect just described is the thermal SZ effect. The proper

velocity of the cluster with respect to the reference frame of the CMB will also change

the CMB spectrum, which is called the kinectic SZ effect, but this effect is smaller than

the thermal effect and hard to measure. Unlike the thermal SZ effect with has both

a decrement and increment of the spectrum, the kinetic SZ effect is indistinguishable

from a temperature fluctuaction of the CMB. It has been detected statistically in an

ensemble of clusters (Hand et al., 2012).

Unlike the observed luminosity of the X-ray emission of a cluster, which decreases

like one over the distance squared, the signal-to-noise ratio of the SZ effect in CMB

maps is almost independent of cluster redshift. Indeed, it depends on the angular

size of the galaxy cluster, at a given mass. This angular size in turn depends on

the angular diameter distance DA(z), which has units of Megaparsecs per radian;

the solid angle of the cluster therefore goes like 1/D2
A(z) which has a relatively weak

dependence on redshift above z ' 0.4 (see Figure 1.3). Thanks to this weak redshift

dependence, an SZ survey can therefore yield an essentially volume-complete catalog

of clusters (Carlstrom et al., 2002).

CMB surveys such as those conducted by the South Pole Telescope (SPT), the

Atacama Cosmology Telescope (ACT), and Planck are now reliably finding massive

clusters of galaxies through their SZ signature (see, e.g., Staniszewski et al., 2009;

Vanderlinde et al., 2010; Williamson et al., 2011; Marriage et al., 2011; Planck Col-

9



Chapter 1: Introduction and summary

laboration et al., 2011).

Figure 1.2: The spectral distortion due to the thermal SZ effect for a massive cluster
is shown as a solid line. This distortion would be added to the CMB; for reference,
the intensity of a black-body spectrum at the temperature of the CMB scaled by a
factor of 0.0005 is shown as a dotted line. The dashed line is the kinetic SZ effect
distortion if the same cluster has a proper velocity of 500 km s−1 The red vertical
lines show the approximate centers of the SPT bands for the 2008-2011 observations,
at 95, 150 and 220 GHz; the first two are in the SZ decrement, and the last one is at
the SZ null.
Image credit: Carlstrom et al. (2002); the red lines were added in the present thesis.
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Chapter 1: Introduction and summary

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
z

1/
D

2 A

Figure 1.3: Inverse square angular diameter distance 1/D2
A(z) as a function of

redshift for a flat ΛCDM cosmology with ΩM = 0.272, ΩΛ = 0.728, and H0 =
70.2 km s−1 Mpc−1.

1.2.2 The South Pole Telescope cluster survey

The South Pole Telescope (SPT; Carlstrom et al., 2011) is a 10-meter telescope

situated at the South Pole that observes the microwave sky with arcminute resolu-

tion. The work presented in this thesis was part of optical follow-up for the SPT-SZ

survey, which is a 2500-deg2 map of the southern sky in 95, 150, and 220 GHz pass-

bands, constructed from SPT observations taken from 2008 to 2011. These passbands

correspond respectively to two bands of SZ decrement and one band on the SZ null

11



Chapter 1: Introduction and summary

(Williamson et al., 2011); this is shown in Figure 1.2. Figure 1.4 shows the footprint

of the SPT survey. For a more detailed discussion of the context, and the most recent

results from the SPT-SZ cluster survey, see Reichardt et al. (2013) and references

therein.

The strength of the SZ signal in the CMB maps from SPT has been character-

ized by the detection significance ξ, the signal-to-noise ratio of the SZ decrement in

minimally-filtered maps (see Vanderlinde et al., 2010).

The parameter ξ correlates well with mass, but does not quite follow a scaling

relation as described in the previous section, therefore we define the unbiased signifi-

cance

ζ =
√
ξ2 − 3. (1.12)

The scaling relation of this observable with mass, which we will call the SZ–mass

scaling relation, is (Reichardt et al., 2013)

ζ = ASZ

(
M500c

3× 1014M�h−1

)BSZ ( H(z)

H(0.6)

)CSZ
. (1.13)

The Reichardt et al. (2013) priors for the cosmological analysis, ASZ = 6.24, BSZ =

1.33, CSZ = 0.83, and DSZ = 0.24 for the scatter (with respectively 30%, 20%, 50%

and 20% Gaussian uncertainties), are derived from simulations.

We will often refer to the “SZ-mass scaling relation” in later chapters. It refers

to this scaling relation, as ζ is the SZ observable that has been used in the SPT

cosmological analysis. In theory, a different observable could be used to that end,

like the integrated Compton parameter YSZ , and in that case the YSZ scaling relation

would be “SZ-mass scaling relation”.

12



Chapter 1: Introduction and summary

Figure 1.4: SPT survey fields per observation year, overlaid on the IRAS infrared
map of the sky.

13



Chapter 1: Introduction and summary

1.3 Galaxies

The galaxies in galaxy clusters not only show a number-count overdensity with re-

spect to the background density of galaxies, but they also show interesting population

features.

There is often a very massive, extended elliptical galaxy that is central to the

cluster, called the Brightest Cluster Galaxy (BCG), or just “the central galaxy”,

depending on whether it is selected purely by magnitude or if morphological criteria

are also taken into account (Skibba et al., 2011). The BCG is located close to the

bottom of the gravitational potential where it relaxes via dynamical friction, and

grows via mergers in the dense cluster center.

In addition to the BCG, many galaxies in the cluster core are red elliptical galaxies,

that is galaxies where star formation has mostly stopped; these galaxies form the

red sequence of the cluster’s color-magnitude diagram (Gilbank et al., 2008). The

red sequence forms because the many gravitational interactions in the dense cluster

environment shock the gas and trigger star formation in galaxies, so that they become

depleted in star-forming gas and evolve to a “red and dead” end-state rapidly when

the blue, short-lived, very massive stars die out.

This similarity in color makes the red elliptical members cluster on a color-

magnitude diagram. We exploit this in selecting likely cluster members as targets

for spectroscopy (see Section 3.3, and Figure 3.4).

Also, this red color is redshifted with distance, and a purely photometric estimate

of the cosmological redshift of clusters can be constructed from the measurement of

the red-sequence location in the color-magnitude diagram (High et al., 2010; Song

14
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et al., 2012).

1.3.1 Dynamical properties

This thesis deals with measuring the velocity dispersion of clusters found in the

SPT survey. A motivation for doing this is presented in the first section of Chapter

2; here we introduce the essential information about velocity dispersions as a cluster

mass observable.

The velocity dispersion of a cluster of a given mass can be computed from the

first principles of gravity and statistical physics, under certain assumptions about

relaxation and equilibrium. The related formulas are the Jeans equation and the

virial theorem.

The precision required by contemporary cosmology demands that eventual non-

equilibrium effects be taken into account, and importantly, the elongated triaxial

nature of dark-matter halos, such that the velocity dispersion to mass scaling relation

needs to be calibrated using cosmological N-body simulations rather than found from

first principles.

Evrard et al. (2008) has been the de facto such calibration. Defining σDM as the

velocity dispersion of dark-matter particles within R200c, that is their true, three-

dimensional velocity dispersion, not a line-of-sight velocity dispersion, their scaling

relation is

σDM(M, z) = σDM,15

[
h(z)M200c

1015M�

]α
(1.14)

where

σDM,15 = 1082.9± 4.0 km s−1 (1.15)
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and

α = 0.3361± 0.0026. (1.16)

h(z) = H(z)/100 km s−1 Mpc−1 is the normalized Hubble expansion parameter. The

scatter in lnσDM at fixed mass is of order 5%.

Kasun & Evrard (2005) and White et al. (2010) showed that the shape of dark-

matter halos introduces a significant dependence of the velocity dispersion on the

line of sight. Dark-matter halos in simulations have an elongated, cigar-like triaxial

shape, where the two shortest axes are similar and the longest one is about twice

as long. This statement is true both in position and velocity space, with the spatial

and velocity main axes having a similar orientation, with a typical misalignment of

20-30 degrees. Taking this line-of-sight dependence into account, the scatter in the

measurement of the velocity dispersion is nearly 40% in dynamical mass, or ∼ 13%

in velocity dispersion at fixed mass.

Saro et al. (2012) calibrated the scaling relation, including the line-of-sight induced

scatter, and calculated the velocity dispersion not of dark matter particles, but of dark

matter sub halos, identified as galaxies. Their result is, for a scaling relation of the

same form as equation 1.14, that

σDM,15 = 1060± 53 km s−1 (1.17)

and

α = 0.343± 0.003, (1.18)

with the lognormal scatter equal to

sσ = α(0.300 + 0.075z). (1.19)
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This redshift-dependent intrinsic scatter in lnσ at fixed mass is 12% at z = 0.6

and reaches 13% above z = 1. The part in parentheses in Equation 1.19 is in turn

the scatter in the mass at fixed dispersion, and is 35% at the median SPT redshift

(z = 0.62 in the sample of Reichardt et al., 2013).

1.4 Structure of this thesis

Chapter 2 presents the place of optical spectroscopy in the multi-wavelength follow-

up of SPT clusters, and offers mathematical considerations about the effect of

survey selection on scaling relations, and simultaneously fitting scaling relations

between mass and multiple observables.

Chapter 3 presents considerations surrounding the design of a multi-object spec-

troscopy program for mass calibration, as well as the detail of the observations

that we have completed: targets, instruments used, optical configuration.

Chapter 4 summarizes the procedure for the reduction of the spectroscopic CCD

data, and the extraction of galaxy redshifts.

Chapter 5 reviews the different steps necessary to use galaxy redshifts to calculate

the cosmological redshift and velocity dispersion of a cluster. We begin with

standard methods, and then use resampling to assess the statistical properties

of our chosen estimators.

Chapter 6 presents the results of the processing of the data: galaxy redshifts, cluster

redshifts, and cluster velocity dispersions. The properties of central galaxies
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and a comparison of the data with SZ and X-ray observations are also briefly

considered.

Chapter 7 concludes by looking forward to next steps that could be taken to follow

this work.

Conventions

Throughout this thesis, we report uncertainties at the 68% confidence level, and

we adopt a WMAP7+BAO+H0 flat ΛCDM cosmology with ΩM = 0.272, ΩΛ = 0.728,

and H0 = 70.2 km s−1 Mpc−1 (Komatsu et al., 2011). Conversion between M500c and

M200c is made assuming an NFW density profile and the Duffy et al. (2008) mass-

concentration relation.
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Chapter 2

Optical spectroscopy and

multi-wavelength follow-up

of SPT clusters

2.1 The place of optical spectroscopy

A spectroscopic follow-up program was a necessary component of the SPT clus-

ter survey. Getting the best cosmological parameter constraints from cosmological

analyses with clusters require knowledge of each cluster’s redshift. While it would be

impractical to measure the spectroscopic redshift of all SPT clusters, and the photo-

metric cluster redshifts from the red sequence have small enough uncertainties not to

affect the cosmological fit (Vanderlinde et al., 2010), a large spectroscopic subsample

provides an essential training set to enable photometric determination of redshifts for

the full sample (High et al., 2010; Song et al., 2012).
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In practice in the SPT program, the images taken and used for the confirmation

of a cluster candidate were often too shallow to yield a reliable photometric redshift

at higher redshit (z & 0.9). Spectroscopic redshifts of the high-redshift end of the

sample were therefore important for the cosmology from number counts, especially in

the high-mass, high-redshift region of parameter space which is heavily constrained by

cosmological models (see Foley et al., 2011). Spectroscopic redshifts at high redshift

were also instrumental in planning X-ray (Andersson et al., 2011) and weak lensing

(High et al., 2012) follow-up observations, which will yield the best constraints on the

calibration of the SZ-mass scaling relation.

As shown in Benson et al. (2013) and Reichardt et al. (2013), the uncertainty in the

normalization of the SZ–mass scaling relation (ASZ , in the terminology of these papers

and of Section 1.2.2) is the leading source of uncertainty in the cosmological parameter

constraints that are derived from SZ-derived cluster abundance measurements. This

motivates using multiple mass estimation methods to calibrate the SZ-mass scaling

relation, ideally in a joint likelihood analysis. The SPT collaboration is pursuing

X-ray observations, weak lensing and velocity dispersions to address the cluster mass

calibration challenge. Currently, the relationship between the SZ observable and mass

is primarily calibrated in a joint fit of SZ and X-ray data to a model that includes

cosmological and scaling relation parameters (Benson et al., 2013, also in Section 1.1).

As both the SZ signal and X-ray emission are produced by the hot gas component

of the cluster, velocity dispersions and weak lensing are important for assessing any

systematic biases from gas-based mass proxies.

How do the eventual results from these methods compare? The intrinsic lognormal
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scatter in the mass proxy at fixed true mass is around 18% for MSZ (Reichardt et al.,

2013, that is the one which we need to calibrate), 7% for MYX
(Kravtsov et al.,

2006), around 30% for weak-lensing aperture masses (High et al., 2012), and 35%

for dynamical masses (Saro et al., 2012). Because the uncertainty on the mean goes

as σ/
√
N for N clusters, X-ray calibration would seem to require 20 or 25 times

fewer clusters than weak lensing or dynamical masses. However, the absolute mass

calibration of the X-ray scaling relation relies on weak lensing mass estimates, so the

accuracy is certainly lower than the precision of the scaling relation. Moreover, the

scaling relations are calibrated using lower redshift clusters (most of them at z < 0.1,

see Vikhlinin et al., 2009a) than the typical SPT cluster. The clusters used in the

SPT cosmological analysis were at a median redshift of z = 0.62 in Reichardt et al.

(2013).

Unlike weak-lensing measurements which realistically require space-based imaging

at z & 0.6 and have different observing systematics across the redshift range, velocity

dispersions also have the advantage of being obtainable from ground-based telescopes

up to high redshift, using similar methods at all redshifts.

2.2 Combining multiple mass observables

This section looks at the scaling relations as random variables and offers a simple

mathematical exploration of the implications of selection and comparison of multiple

observables. The mathematical presentation is very explicit and therefore may be

long in places, but at their heart scaling relations are linear models with a normal

random scatter so that the pieces are simple. Section 2.2.1 is a simple description of
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the biases due to intrinsic scatter and selection, importantly including the Eddington

bias.

Section 2.2.2 describes the notion of Bayesian deboosting. We give it attention

because it has proven to be counterintuitive for some colleagues when it comes to

follow-up masses.

Section 2.2.3 and the associated Appendix looks at the information that can be

extracted from the measured moments (expectation value, variance, covariance) of

multiple observables related to the cluster mass. This section is longer and self-

contained, and can be omitted on a first reading. It was first explored as a path to

reduce the dimensionality of the SPT cosmological MCMC as presented in Vander-

linde et al. (2010), which was not easily scalable to multiple observables. This context

is explained at the beginning of the section.

2.2.1 Mass bias from scatter and cluster selection

Fitting the scaling relations requires attention to a couple of statistical biases

that arise from the nature of the assumed scaling relation. Assume that we are fitting

two different mass estimates against one another, that have independent lognormal

scatter about the true mass M :

lnM1 = lnM + S1 (2.1)

lnM2 = lnM + S2 (2.2)

where Si is a normal random variable of mean 0 and variance σ2
i . Then doing an

ordinary least squares (OLS) linear regression of lnM1 vs lnM2 gives an average
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slope of

βOLS =
Cov(lnM1, lnM2)

Var(lnM2)
=

Cov(lnM + S1, lnM + S2)

Var(lnM + S2)
(2.3)

=
Var lnM

Var lnM + σ2
2

6= 1. (2.4)

The slope is biased away from 1 due to the presence of scatter, and this would be

true even when fitting an entire population of clusters, without a selection cut. The

selection cut is discussed below. Imposing no selection cut is not a realistic situation

but we stress the point that this is not due to selection artifacts.

The second source of bias does arise from the selection process. The clusters are

selected as part of a survey, e.g. an SZ survey in the case of SPT. The sample of

clusters to be used for cosmology is then defined by a signal-to-noise cut (e.g. ξ ≥ 5.0

in the case of Vanderlinde et al., 2010), which we will approximate here as being

equivalent to a mass cut. The net result of a mass cut Mc, as illustrated in Figure

2.1, is that clusters with M < Mc whose observed mass has scattered up above Mc

are kept, while the clusters with M > Mc whose observed mass has scattered down

below the cut are rejected. The sample’s lnM1 is biased high compared to lnM , and

the slope of linear fits of scaling relations is further affected. This selection effect is

the Eddington bias (Eddington, 1913).

These issues are accounted for in a proper statistical treatment, such as the cos-

mological MCMC fit presented in SPT papers (Benson et al., 2013; Reichardt et al.,

2013). The following section tries to clarify some questions related to the Eddington

bias when it comes to multi-observable follow-up.
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Figure 2.1: Effect of mass selection on mutli-observable fits. “True mass” data points
were generated from a toy-model cluster mass function. Mass estimate M2 has 25%
lognormal scatter from the true mass, and mass estimate M1 has 20% scatter. The
mass observables for the entire population are in one-to-one correspondance, but
selecting points above a mass cut keeps points that have scattered up above the mass
threshold, and rejects points that have scattered down, creating a slope bias.
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2.2.2 Follow-up masses for individual clusters

If we measure the velocity dispersion of a cluster that was selected as part of

the SPT sample, then does the Eddington bias affect the follow-up measurement?

Does the SZ selection offer a prior that needs to be applied to correct the dynamical

mass? This last question is relevant in that the SZ observable on which the selection is

operated has a smaller scatter than the dynamical mass, so that some of the measured

dynamical masses will be outside the range that is “possible” or allowed from the SZ

selection. One, a Bayesian perhaps, could then imagine that the dynamical mass can

or needs to be corrected in some way.

Part of the answer to all those questions is that one needs to be statistically

precise about what question is being asked, and depending on what the question

is, properly accounting for the fact that a cluster was SZ-selected in e.g., quoting a

dynamical mass from velocity dispersions may or may not involve applying a prior

on the measured dynamical masses.

We will think of the follow-up observations in two different ways.

If we have a single interesting cluster, we can ask what is the best estimate of the

true mass given the SZ selection and measured velocity dispersion.

If we are instead looking at a sample of follow-up masses, we are interested in the

average bias.

Average bias

Suppose that each cluster has a true mass M that is distributed in accord with

lnM ∼ pM(lnM), where pM is a properly normalized version of the cluster mass
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function, nM(M, z), described in Section 1.1, also integrated over a range of redshifts

for the present argument.

Then there are different observables that yield masses, e.g. the SZ mass and the

dynamical mass. They are presumed to relate to the true mass according to the

following scaling relations:

lnMSZ = lnM + SSZ (2.5)

lnMdyn = lnM + Sdyn (2.6)

where the S are normal random variables whose realisations or standard deviation

are usually called scatter.

Just to stress what these mean so far for clarity: a realization of those random

variables is associated with each cluster, not with each observation. The scatter is

due to physical properties and not to measurement errors.

Then we go and observe them. For simplicity, suppose that we select a sample on

MSZ , i.e. MSZ ≥ M0. From here we need to condition the random variables on this

selection.

So, for instance, the expectation value of the mass bias with respect to the true

mass in the selected sample is

E(lnMSZ − lnM |MSZ ≥M0) = E(SSZ |MSZ ≥M0) (2.7)

E(lnMdyn − lnM |MSZ ≥M0) = E(Sdyn|MSZ ≥M0) (2.8)

That is, the expectation value of the scatter, conditioned on the selection.

Let us calculate what these are. The joint probability distribution is

p(lnM = µ, SSZ = sSZ , Sdyn = sdyn) = pM(µ)pN(sSZ , sdyn) (2.9)
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where pM is the cluster mass probability function and pN is a multivariate normal.

The conditional p.d.f. of the scatters once the mass is selected is then

p(SSZ = sSZ , Sdyn = sdyn|MSZ ≥M0)

∝
∫ ∞
M0

dMSZ

∫
dµδ(lnMSZ − µ− sSZ)pM(µ)pN(sSZ , sdyn)

∝
∫ ∞
M0

dMSZpM(lnMSZ − sSZ)pN(sSZ , sdyn) (2.10)

In other words, the mass function is convolved with the multivariate scatter.

In the special case where SSZ and Sdyn are uncorrelated, the multivariate normal

p.d.f. factors to a product of univariate ones:

pN(sSZ , sdyn) = pN(sSZ)pN(sdyn). (2.11)

Evaluating the expectation values that we are after, we get

E(SSZ |MSZ ≥M0) =

∫∫
dsSZdsdyn [sSZp(sSZ , sdyn|MSZ ≥M0)] (2.12)

∝
∫
dsSZ

∫ ∞
M0

dMSZsSZpM(lnMSZ − sSZ)pN(sSZ) (2.13)

for the SZ mass Eddington bias, which is nonzero in general. For the other mass:

E(Sdyn|MSZ ≥M0) =

∫∫
dsSZdsdyn [sdynp(sSZ , sdyn|MSZ ≥M0)] (2.14)

∝
∫
dsdyn [sdynpN(sdyn)] (2.15)

= 0. (2.16)

Therefore, the masses whose scatter is uncorrelated with the selection are unbiased

as an ensemble.
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Individual cluster masses

There is a different statistical question: what is the expected realization of the

scatter given a measured mass? The way that those scatters, adding up to zero in

the case of E(SSZ |MSZ ≥ M0) (see previous section), are distributed across clusters

depends on the shape of the selected mass function; to take extreme cases, the clusters

with the highest values of Mdyn have probably scattered up, while any cluster with,

e.g., Mdyn lower than the lowest MSZ has probably scattered down. Mathematically,

what we want to calculate is

E(Sdyn|MSZ ≥M0,Mdyn) (2.17)

which is different from

E(Sdyn|MSZ ≥M0), (2.18)

which we just calculated.

The p.d.f. that we need to compute this expectation value is (using Bayes’ theo-

rem)

p(Sdyn = sdyn|MSZ ≥M0, lnMdyn) =
p(Sdyn = sdyn, lnMdyn|MSZ ≥M0)

p(lnMdyn|MSZ ≥M0)
(2.19)

Starting again from the simple (2.9):
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p(lnMSZ , lnMdyn, Sdyn = sdyn) =

∫∫
dsSZdµδ(lnMSZ − µ− sSZ)

× δ(lnMdyn − µ− sdyn)

× pM(µ)pN(sSZ , sdyn) (2.20)

= pM(lnMdyn − sdyn)

× pN(lnMSZ − lnMdyn + sdyn, sdyn) (2.21)

Applying the selection:

p(lnMdyn = µ, Sdyn = sdyn|MSZ ≥M0) =

∫ ∞
M0

dMSZpM(µ− sdyn)

× pN(lnMSZ − µ+ sdyn, sdyn) (2.22)

Finally, finding the p.d.f. of lnMdyn:

p(lnMdyn = µ|MSZ ≥M0) =

∫
dsdyn

∫ ∞
M0

dMSZpM(µ− sdyn)

× pN(lnMSZ − µ+ sdyn, sdyn) (2.23)

Therefore, following equation (2.19):

p(Sdyn = sdyn |MSZ ≥M0, lnMdyn = µ)

=

∫∞
M0
dMSZpM(µ− sdyn)pN(lnMSZ − µ+ sdyn, sdyn)∫
ds
∫∞
M0
dMSZpM(µ− s)pN(lnMSZ − µ+ s, s)

(2.24)

And the expected value of the scatter is

E(Sdyn |MSZ ≥M0, lnMdyn = µ)

=

∫
ds
∫∞
M0
dMSZ s pM(µ− s)pN(lnMSZ − µ+ s, s)∫

ds
∫∞
M0
dMSZpM(µ− s)pN(lnMSZ − µ+ s, s)

. (2.25)

29



Chapter 2: Optical spectroscopy and multi-wavelength follow-up of SPT clusters

Then, to check our previous conclusion, the average of the expected scatters will

be

Average ESdyn =
∑

lnMdyn

E(Sdyn|MSZ ≥M0, lnMdyn)P (lnMdyn|MSZ ≥M0)

=

∫
dµ

∫
ds

∫ ∞
M0

dMSZ s pM(µ− s)pN(lnMSZ − µ+ s, s)

(2.26)

Now this can be re-written slightly differently by changing the order of integration,

and making the Jacobian transformation µ→ µ+ s:

Average ESdyn =

∫ ∞
M0

dMSZ

∫∫
ds dµ s pM(µ)pN(lnMSZ − µ, s) (2.27)

Finally, in the absence of correlation in the scatters, the multivariate normal factorizes

into separate normal distributions:

Average ESdyn =

∫ ∞
M0

dMSZ

∫∫
ds dµ s pM(µ)pN(lnMSZ − µ)pN(s) (2.28)

=

∫ ∞
M0

dMSZ

∫
dµ pM(µ)pN(lnMSZ − µ)

∫
ds s pN(s) (2.29)

= 0 (2.30)

The removal of E(SSZ |MSZ) is called “Bayesian deboosting”, and so we could

name the removal of E(Sdyn|MSZ ≥M0, lnMdyn) “Bayesian deboosting of the follow-

up mass”. In the case of uncorrelated scatter, this deboosting will not add or subtract

ensemble bias because there is none to begin with. Of course it will change the scatter

of the sample, as it, so to speak, removes it on average.
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2.2.3 Combining multiple mass observables

One can play expectation-value games similar to what was done in the previous

section with N generic observables rather than two different masses, which we do in

this section, with some of the calculations pushed to an appendix to the chapter.

The goal of this work was to lay the groundwork for a joint fit of scaling relations

and cosmology. For Nclusters different clusters of galaxies and Nobservables observables,

the dimensionality of the MCMC as presented in Vanderlinde et al. (2010) was scaling

as 2Nobservables , making it a hard problem to scale, and already impractical to use in its

then-current implementation for Nobservables = 3. The idea of the following calculation

was to use one observable for cluster counts, and then re-express the observed co-

variance matrix of the different observables in terms of a small number of parameters

describing the effect of the mass function and selection, and the slopes, intercepts and

covariances of the scaling relations, effectively making it an O(N2
observables) problem.

Scalability of the SPT analysis was achieved in a different way in Benson et al.

(2013) and therefore the present idea was never fully implemented with cluster counts,

but we include it here because it may be useful, for instance this framework is easily

extensible to the simultaneous fit of multiple surveys with different selection. The

following lessons or results also emerge from the treatment:

1. As far as the cluster mass function is concerned, a proper fit of the scaling

relations only requires knowledge of (and in return, can only constrain) the

first and second moments of the “selected mass function”, pM(lnM |ξi ≥ ξ0).

Additional constraints on the mass function will come from the number counts

fit.
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2. E(Sξ|ξ ≥ ξ0) > 0 : the average scatter of the selected data points is positive in

the selection observable, in other words, points have scattered up on average.

Summary of the model and results

In our model, we will suppose that for each galaxy cluster, there is a true mass

Mi and redshift zi. In practice we will usually know the cluster redshift. Mi is a

realization of the true mass random variable, which is distributed according to the

cluster mass function:

lnM, z ∼ pM(lnM, z). (2.31)

There is some freedom as to how to define the true mass and there are different

canonical choices for different scaling relations (e.g. M200c, M500c), but we will just

assume here that one of them has been chosen for all scaling relations. Of course

some mass definition is most natural to each observable, but that difficulty is not

limited to the present argument and needs to be addressed in any fit.

The different observables are related to the true mass through scaling relations of

the form1

θi = lnAi + ln fi(z) +Bi lnM + Si (2.32)

where i is the index indicating which observable it is, the scatter Si is normal with

variance σ2
i and correlations with other scatters ρij, and fi(z) contains both the

redshift evolution E(z)C and other redshift dependence of the observable, for instance

luminosity-distance, K-correction, etc.

1From here on, observables like θ and ξ will be named in log space to avoid carrying too many
logs in the equations.
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Now that we have defined the scaling relations, we select our sample from a range

of values of an observable that we call ξ,

ξi ≥ ξ0, (2.33)

and call the other observables θ1, θ2, etc. We then compute the first and second

moments, i.e. the expectation value, variance and covariance of the scaling relations

given the selection. Having an expression for these moments in terms of the scaling

relation parameters is equivalent in spirit to doing a linear fit.

The explicit calculations can be found in the Appendix to this chapter.

Taylor-expanding the moments to first order in ρξi (more on the motivation later;

as we will see, some of the orders are identically zero), we can encode the dependence

on the mass function and selection in five constants or parameters; the rest of the

parameters in the equations are all from scaling relations. Those five constants are:

Ê lnM ≡ E(lnM |ξ ≥ ξ0) (2.34)

V̂ar lnM ≡ Var(lnM |ξ ≥ ξ0) (2.35)

Ĉov(lnM,Sξ) ≡ Cov(Sξ, lnM |ξ ≥ ξ0) (2.36)

ÊSξ ≡ E(Sξ|ξ ≥ ξ0) (2.37)

V̂arSξ ≡ Var(Sξ|ξ ≥ ξ0) (2.38)

The names given, basically using a hat to remind of the conditionality, aim to make

the equations more succinct and remind us that those are constants, while retaining

some of the meaning, which names like C1, C2 wouldn’t do.
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We find the basic results that:

E(Si|ξ ≥ ξ0) =
ρξiσi
σξ

ÊSξ +O(ρ3
ξi) (2.39)

Cov(Si, lnM |ξ ≥ ξ0) =
ρξiσi
σξ

Ĉov(lnM,Sξ) +O(ρ3
ξi) (2.40)

Cov(Si, Sξ|ξ ≥ ξ0) =
ρξiσi
σξ

V̂arSξ +O(ρ3
ξi) (2.41)

Var(Si|ξ ≥ ξ0) = σ2
i +O(ρ2

ξi) (2.42)

Cov(Si, Sj|ξ ≥ ξ0) = ρijσiσj +O(ρ2) (2.43)

As will become apparent in the full calculation, the appearance of the first and

second moments of the selected mass function does not come from approximating that

function as a normal distribution (there is no approximation of the mass function),

but rather from the inherently Gaussian nature of scaling relations, that are a linear

relation plus a Gaussian scatter.

These basic results can be used to express the full expectation and covariance of

arbitrary observables, through the scaling relations.

Appendix: multiple scaling relation statistics

Expectation values and covariances of observables

The previous “basic results”, moments of the scatter random variables, cannot

be measured directly in the data, therefore in the following, expectation values and

covariances of real observables are found. The redshift dependence does not appear

as the quantities have been redifined – or corrected for redshift dependence – by

θi → θi − ln fi(z). Only in the case of ξ do we write ξ̃ ≡ ξ − ln fξ(z), as reference to

the uncorrected ξ still needs to be made, in the selection.
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We therefore have, to O(ρ2
ξi):

E(θ1|ξ ≥ ξ0) = E(lnA1 +B1 lnM + S1|ξ ≥ ξ0) (2.44)

= lnA1 +B1Ê lnM + ρξ1σ1
ÊSξ
σξ

(2.45)

Var(θ1|ξ ≥ ξ0) = Var(lnA1 +B1 lnM + S1|ξ ≥ ξ0) (2.46)

= Var(B1 lnM |ξ ≥ ξ0) + Var(S1|ξ ≥ ξ0) + 2Cov(B1 lnM,S1|ξ ≥ ξ0)

= B2
1V̂ar lnM + 2B1Cov(lnM,S1|ξ ≥ ξ0) + Var(S1|ξ ≥ ξ0)

= B2
1V̂ar lnM + 2B1ρξ1σ1

Ĉov(lnM,Sξ)

σξ
+ σ2

1 (2.47)

Cov(θ1, θ2|ξ ≥ ξ0) = Cov(lnA1 +B1 lnM + S1, lnA2 +B2 lnM + S2|ξ ≥ ξ0)

= Cov(B1 lnM,B2 lnM |ξ ≥ ξ0) + Cov(B1 lnM,S2|ξ ≥ ξ0)

+ Cov(B2 lnM,S1|ξ ≥ ξ0) + Cov(S1, S2|ξ ≥ ξ0)

= B1B2V̂ar lnM +B1Cov(lnM,S2|ξ ≥ ξ0)

+B2Cov(lnM,S1|ξ ≥ ξ0) + Cov(S1, S2|ξ ≥ ξ0)

= B1B2V̂ar lnM + (B1ρξ2σ2 +B2ρξ1σ1)
Ĉov(lnM,Sξ)

σξ
+ ρ12σ1σ2

(2.48)
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Cov(θ1, ξ̃|ξ ≥ ξ0) = Cov(lnA1 +B1 lnM + S1, lnAξ +Bξ lnM + Sξ|ξ ≥ ξ0)

= B1BξV̂ar lnM +BξCov(lnM,S1|ξ ≥ ξ0)

+B1Cov(lnM,Sξ|ξ ≥ ξ0) + Cov(S1, Sξ|ξ ≥ ξ0)

= B1BξV̂ar lnM +

(
B1 +

Bξρξ1σ1

σξ

)
Cov(lnM,Sξ|ξ ≥ ξ0)

+
ρξ1σ1

σξ
Var(Sξ|ξ ≥ ξ0)

≡ B1BξV̂ar lnM + (B1σξ +Bξρξ1σ1)
Ĉov(lnM,Sξ)

σξ

+ ρξ1σ1
V̂arSξ
σξ

(2.49)

We also have exactly, that is not to any order in ρξi:

E(ξ̃|ξ ≥ ξ0) = E(lnAξ +Bξ lnM + Sξ|ξ ≥ ξ0) (2.50)

= lnAξ +BξÊ lnM + ÊSξ (2.51)

Var(ξ̃|ξ ≥ ξ0) = Var(lnAξ +Bξ lnM + Sξ|ξ ≥ ξ0) (2.52)

= B2
ξ V̂ar lnM + Var(Sξ|ξ ≥ ξ0) + 2BξCov(lnM,Sξ|ξ ≥ ξ0)

≡ B2
ξ V̂ar lnM + V̂arSξ + 2BξĈov(lnM,Sξ) (2.53)

Calculations: the easy way

We start with a multivariate normal:

pN(S = s, Sξ = sξ) =
1

2πσσξ
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
s2

σ2
− 2ρssξ

σσξ
+
s2
ξ

σ2
ξ

])
(2.54)
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To linear order in ρ:

pN(s, sξ) ' pN(s)pN(sξ) exp

(
ρssξ
σσξ

)
(2.55)

' pN(s)pN(sξ)

(
1 +

ρssξ
σσξ

)
(2.56)

We can substitute that expansion in the joint p.d.f.:

p(lnM = µ, S = s, Sξ = sξ | ξ ≥ ξ0)

=

∫∫ ∞
ξ0

p(ξ|µ, z, sξ)pN(sξ, s)pM(µ, z)dzdξ (2.57)

=

∫∫ ∞
ξ0

p(ξ|µ, z, sξ)pN(s)pN(sξ)

×
(

1 +
ρssξ
σσξ

)
pM(µ, z)dzdξ

where, by slight abuse of notation,

p(ξ|µ, z, sξ) ∼ δ(ξ − ln fξ(z)−Bξµ− sξ). (2.58)

“Slight abuse of notation” means here in practice that we will need to be cautious

about the order of integration, so that either sξ or µ (or both) need to be integrateed

over, and need to be integrated before ξ. Choosing to integrate over µ, we get

p(S = s, Sξ = sξ|ξ ≥ ξ0) = pN(s)

(
1 +

ρssξ
σσξ

)
pN(sξ)

×
∫∫ ∞

ξ0

pM

(
ξ − ln fξ(z)− sξ

Bξ

, z

)
dzdξ (2.59)

Integrating over s, we get

p(Sξ = sξ|ξ ≥ ξ0) = pN(sξ)

∫∫ ∞
ξ0

pM

(
ξ − ln fξ(z)− sξ

Bξ

, z

)
dzdξ (2.60)

therefore,

p(S = s, Sξ = sξ|ξ ≥ ξ0) = pN(s)

(
1 +

ρssξ
σσξ

)
p(sξ|ξ ≥ ξ0) (2.61)
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We can now calculate:

E(S|ξ ≥ ξ0) =

∫∫
spN(s)

(
1 +

ρssξ
σσξ

)
p(sξ|ξ ≥ ξ0)dsdsξ (2.62)

=
ρσ

σξ
E(Sξ|ξ ≥ ξ0) (2.63)

In the next subsection, where we do the integrals more explicitly, we will calculate

that this expectation value is ρσC with C ≥ 0. With this condition translates here

to E(Sξ|ξ ≥ ξ0) ≥ 0, which makes sense intuitively: because of the cut ξ ≥ ξ0,

some points that have scattered up across the cut will be kept, and some points that

have scattered down across the cut will not be selected, leaving an overall positive

expectation value for the scatter.

We can also calculate the covariance here:

E(SξS|ξ ≥ ξ0) =

∫∫
ssξpN(s)

(
1 +

ρssξ
σσξ

)
p(sξ|ξ ≥ ξ0) (2.64)

= ρσ · 1

σξ
E(S2

ξ |ξ ≥ ξ0) (2.65)

Therefore

Cov(Sξ, S|ξ ≥ ξ0) = E(SξS|ξ ≥ ξ0)− E(S|ξ ≥ ξ0)E(Sξ|ξ ≥ ξ0) (2.66)

= ρσ · 1

σξ

(
E(S2

ξ |ξ ≥ ξ0)− E(Sξ|ξ ≥ ξ0)2
)

(2.67)

=
ρσ

σξ
Var(Sξ|ξ ≥ ξ0). (2.68)

Starting again with equation (2.57), but this time integrating over sξ, we have

p(µ, s|ξ ≥ ξ0) =

∫∫ ∞
ξ0

pN(s)pN(ξ − ln fξ(z)−Bξµ)

×
(

1 +
ρs(ξ − ln fξ(z)−Bξµ)

σσξ

)
pM(µ, z)dzdξ (2.69)
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The piece that will be needed to interpret the coming result is starting from

p(lnM = µ, Sξ = sξ|ξ ≥ ξ0) =

∫∫ ∞
ξ0

p(ξ|µ, z, sξ)pN(sξ)pM(µ, z)dzdξ (2.70)

and being careful about the order of integration:

E(Sξ lnM |ξ ≥ ξ0) =

∫∫∫∫ ∞
ξ0

µ sξ p(ξ|µ, z, sξ)pN(sξ)pM(µ, z)dzdξdµdsξ (2.71)

=

∫∫∫ ∞
ξ0

µ (ξ − ln fξ(z)−Bξµ) pN(ξ − ln fξ(z)−Bξµ)

× pM(µ, z)dzdξdµ

From (2.69), we can calculate

E(S lnM |ξ ≥ ξ0) =

∫∫
sµ

∫∫ ∞
ξ0

pN(s)pN(ξ − ln fξ(z)−Bξµ)

×
(

1 +
ρs(ξ − ln fξ(z)−Bξµ)

σσξ

)
pM(µ, z)dzdξ

=
ρσ

σξ

∫∫∫ ∞
ξ0

µf(ξ)pN(ξ − ln fξ(z)−Bξµ)

× (ξ − ln fξ(z)−Bξµ)pM(µ, z)dzdξdµ

=
ρσ

σξ
E(Sξ lnM |ξ ≥ ξ0) (2.72)

Therefore

Cov(S, lnM |ξ ≥ ξ0) =
ρσ

σξ
E(Sξ lnM |ξ ≥ ξ0) (2.73)

−E(lnM |ξ ≥ ξ0) · ρσ
σξ

E(Sξ|ξ ≥ ξ0) (2.74)

=
ρσ

σξ
Cov(Sξ, lnM |ξ ≥ ξ0) (2.75)

Explicit integrals

To show that the Taylor expanson of the previous section is a desirable thing to

do, we start here by going as far as possible with an exact calculation.
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Just like what was done in Section 2.2.2, we will start with the joint probability

distribution:

p(lnM = µ, S = s, ξ = ξ) =

∫∫
δ(ξ −Bξµ− ln fξ(z)− sξ)pN(sξ, s)pM(µ, z)dzdsξ

=

∫
pN(ξ −Bξµ− ln fξ(z), s)pM(µ, z)dz (2.76)

where S is the scatter of some observable, pN is a multivariate normal with variances

σξ, σ and correlation ρ, and pM is the cluster mass function; also, for concision, lnAξ

has been absorbed into ln fξ(z).

From there, we need to integrate to find the conditional distribution:

p(lnM = µ, S = s|ξ ≥ ξ0) =

∫∫ ∞
ξ0

pN(ξ −Bξµ− ln fξ(z), s)pM(µ, z)dzdξ (2.77)

Here we need to be a little more explicit. The bivariate normal distribution, the

joint p.d.f. of scatters, is

pN(sξ, s) =
1

2πσσξ
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
s2

σ2
− 2ρssξ

σσξ
+
s2
ξ

σ2
ξ

])
(2.78)
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Therefore, writing the constant at the front of pN as K, we have the integral∫ ∞
ξ0

pN(ξ − Bξµ− ln fξ(z), s)dξ

= K exp

(
− 1

2 (1− ρ2)

s2

σ2

)
×

∫ ∞
ξ0

exp

(
− 1

2 (1− ρ2)

[
− 2ρs (ξ −Bξµ− ln fξ(z))

σσξ

+
(ξ −Bξµ− ln fξ(z))2

σ2
ξ

])
dξ

= K exp

(
− 1

2 (1− ρ2)

s2

σ2

)
×

∫ ∞
ξ0−Bξµ−ln fξ(z)

exp

(
− 1

2 (1− ρ2)

[
−2ρsξ

σσξ
+
ξ2

σ2
ξ

])
dξ

= K exp

(
− 1− ρ2

2 (1− ρ2)

s2

σ2

)
×

∫ ∞
ξ0−Bξµ−ln fξ(z)

exp

(
− 1

2 (1− ρ2)

[
ξ

σξ
− ρs

σ

]2
)
dξ

= K exp

(
−1

2

s2

σ2

)
× σξ

∫ ∞
ξ0−Bξµ−ln fξ(z)

σξ
− ρs
σ

exp

(
− 1

2 (1− ρ2)
ξ̂2

)
dξ̂

= K exp

(
−1

2

s2

σ2

)
× σξ

√
π
√

2(1− ρ2)

2
erfc

[
1√

2(1− ρ2)

(
ξ0 −Bξµ− ln fξ(z)

σξ
− ρs

σ

)]

In summary,∫ ∞
ξ0

pN(ξ −Bξµ− ln fξ(z), s)dξ =
1

2
√

2πσ
exp

(
−1

2

s2

σ2

)
(2.79)

× erfc

[
1√

2(1− ρ2)

(
ξ0 −Bξµ− ln fξ(z)

σξ
− ρs

σ

)]
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and

p(lnM = µ, S = s|ξ ≥ ξ0) =
N

2
√

2πσ
exp

(
−1

2

s2

σ2

)
×

∫
erfc

[
1√

2(1− ρ2)

(
ξ0 −Bξµ− ln fξ(z)

σξ
− ρs

σ

)]
× pM(µ, z)dz (2.80)

This is as much as we can do exactly, and that remaining integral could be done

numerically, but we can continue from here if we do a Taylor expansion in ρ. It is a

reasonable expansion to do; among other reasons (but that will no longer be as true

for more than two observables), if the scatters of our only two observables are very

correlated, then we cannot hope to untangle all of their parameters, as a correlated

realization of the scatter just looks like a different mass.

The complementary error function is linked to the error function by

erfc(x) = 1− erf(x) (2.81)

The derivative of the error function is

d erf(x)

dx
=

2√
π

exp(−x2) (2.82)

therefore

erf(a+ ε) = erf(a) +
d erf(x)

dx

∣∣∣∣
x=a

ε+ . . . (2.83)

' erf(a) +
2√
π

exp(−a2)ε (2.84)
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So

erfc

[
1√
2

(
ξ0 − ln fξ(z)−Bξµ

σξ
− ρs

σ

)]
= 1− erf

(
ξ0 − ln fξ(z)−Bξµ√

2σξ
− ρs√

2σ

)
' 1− erf

(
ξ0 − ln fξ(z)−Bξµ√

2σξ

)
+

2√
π

exp

[
−
(
ξ0 − ln fξ(z)−Bξµ√

2σξ

)2
]

ρs√
2σ

(2.85)

We therefore write, to leading order in ρ:

p(lnM = µ, S = s|ξ ≥ ξ0) =

∫ (
C0(µ, z) + C1(µ, z)

ρs

σ

)
× 1√

2πσ
exp

(
−1

2

s2

σ2

)
pM(µ, z)dz (2.86)

Notice that C1(µ, z) > 0 as it is an exponential.

Also, integrating over s, we find

p(lnM = µ|ξ ≥ ξ0) =

∫
C0(µ, z)pM(µ, z)dz (2.87)

C0×pM therefore represents the selected mass function. Because the total probability

is 1, ∫∫
C0(µ, z)pM(µ, z)dµdz = 1 (2.88)

Integrating first over µ instead, we find the conditional distribution of S:

p(S = s|ξ ≥ ξ0) =
(

1 + Cρ
s

σ

) 1√
2πσ

exp

(
−1

2

s2

σ2

)
(2.89)

where C > 0. We saw previously that this C ∝ E(Sξ|ξ ≥ ξ0), so that the condition

C > 0 has a natural interpretation.
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Expectation values and covariances

We can now compute the conditional moments of our random variables.

E(S|ξ ≥ ξ0) =

∫
s p(S = s|ξ ≥ ξ0)ds = Cρ

VarS

σ
+O(ρ3) (2.90)

= Cρ
σ2

σ
+O(ρ3) (2.91)

= Cρσ +O(ρ3) (2.92)

The ρ2 term is identically 0 as our unconditioned normal distribution has mean 0

and doesn’t have a third moment. Then

Var(S|ξ ≥ ξ0) = E(S2|ξ ≥ ξ0)− (E(S|ξ ≥ ξ0))2 (2.93)

E(S2|ξ ≥ ξ0) =

∫
s2 p(S = s|ξ ≥ ξ0)ds (2.94)

= VarS +O(ρ2)

= σ2 +O(ρ2) (2.95)

Var(S|ξ ≥ ξ0) = σ2 +O(ρ2)− (Cρσ)2

= σ2 +O(ρ2) (2.96)

Also,

E(lnM S|ξ ≥ ξ0) =

∫∫
µ s p(µ, s|ξ ≥ ξ0) (2.97)

=
1√
2
ρσ

∫∫
µC1(µ)pM(µ, z)dµdz (2.98)
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So that

Cov(lnM,S|ξ ≥ ξ0) =
1√
2
ρσ

∫∫
µC1(µ, z)pM(µ, z)dµdz

−−C1√
2
ρσ

∫∫
µC0(µ, z)pM(µ, z)dµdz

∝ ρσ. (2.99)

Finally, doing the above calculation with two observables in addition to ξ (which

involves a three-dimensional normal distribution), we find that

Cov(S1, S2|ξ ≥ ξ0) = ρ12σ1σ2 +O(ρ2). (2.100)
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Chapter 3

A spectroscopic follow-up program

for the SPT-SZ cluster survey

This chapter details both the strategy of the SPT cluster spectroscopic follow-up,

in Section 3.1, and the specifics of the observations we have carried out, in Sections

3.2 and 3.3.

3.1 A few-Nmembers spectroscopic strategy

The design of a spectroscopic follow-up program for clusters hinges on the fact

that contemporary multi-object spectrographs use slit masks, so that the investment

in telescope time, the limiting resource for the follow-up, is quantized by how many

masks are allocated to each cluster. The optimization problem is therefore to allocate

the observation of M masks (a fixed number) across C clusters. We want to do it

in a way that minimizes the uncertainty in the ensemble cluster mass normalization,
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from dynamical masses. Considerations surrounding the measurement of the cluster’s

redshift, the other important goal of the follow-up program, do factor in, as will be

discussed below, but do not affect the optimization discussed here since a reliable

redshift can be obtained with a single mask.

We use a simple model to carry out this optimization. We call the number of

member galaxy redshifts obtained in a single cluster Nmembers; it is an important

assumption of our model that these Nmembers have been identified as members of the

galaxy cluster. We will revisit this assumption below. We call the average number

of member redshifts observed per multi-slit mask r (“return”), and the number of

masks per clusters m. Therefore, on average we have that

Nmembers = rm (3.1)

and

M = Cm. (3.2)

Another simplifying assumption that we make is that the distribution of velocities

in a cluster is close to a normal distribution. That is certainly true on average, as

we will see with the stacked cluster in Section 5.2, but the measured distribution

for individual clusters can deviate from normality. The use of robust estimators

minimizes the impact of such deviations on the measured redshift and dispersion. We

will use the fact that the variance of the mean and variance (dispersion squared) for

a Gaussian probability distribution are

Var(µ̂) =
σ2

C
, (3.3)

Var(σ̂2) =
2σ4

C − 1
, (3.4)
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where the caret denotes the statistical estimator. Per Equation 3.4, the fractional

uncertainty in the velocity dispersion of a single cluster will be

σdispersion =
1

2

√
2

Nmembers − 1
, (3.5)

where potentially confusing notation has been used to keep up with existing conven-

tions: σ in equations 3.3 and 3.4 is the standard deviation (dispersion) of the normal

distribution (the distribution of velocities) while σquantity is the fractional uncertainty

in a quantity. Since the dynamical mass is proportional to the dispersion cubed, the

fractional uncertainty in the dynamical mass is three times σdispersion. N -body sim-

ulations inform us that line-of-sight projection effects induce an unavoidable scatter

in the relationship between line-of-sight velocity dispersion and cluster mass (Kasun

& Evrard, 2005; White et al., 2010); this intrinsic scatter is 12% in ln(dispersion) at

fixed mass, implying a 35% scatter in dynamical mass (Saro et al., 2012). This 35%

intrinsic scatter needs to be added in quadrature to the dynamical mass uncertainty

of any one cluster; as we will see, it ultimately implies that obtaining higher-precision

velocity dispersions on a few clusters is less informative (for the purposes of mass

calibration) than obtaining coarser dispersions on more clusters. The fractional un-

certainty on the mass of a single cluster is given by

(σM)2 =

(
3

2

√
2

Nmembers − 1

)2

+ (0.35)2 . (3.6)

The fractional uncertainty in the mass normalization, the mean of C masses, will

therefore be

(σnorm)2 =
(σM)2

C
=

1

C

(3

2

√
2

rm− 1

)2

+ (0.35)2

 (3.7)
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where we have replaced Nmembers = rm. It may already be clear to the reader that

C simply needs to be as large as possible. But m also varies in a way that is tied to

C. As stated in Equation 3.2, we know that the total number of masks M = Cm,

therefore C = M/m and

(σnorm)2(m) =
m

M

(3

2

√
2

rm− 1

)2

+ (0.35)2

 . (3.8)

This function is minimized for m = 7.1/r. The average number of members per

mask, r, is certainly greater than 7 for the spectrographs that we have been using,

approximately in the 10 − 15 range up to high redshift (and would be greater if we

considered it separately in the low to medium redshift range, z . 0.8.) Therefore,

m . 1.

So from this argument alone, the right thing to do is to is to observe a single mask

per cluster. However, we should remember the assumptions that we made. The first

assumption was that the measured galaxies were cluster members. The membership

determination is done from the observed distribution of velocities, therefore its ef-

ficiency will depend on the number of members in the observed sample of galaxies.

In other words, the observation needs to be good enough for a proper discrimination

of the main distribution from the background. The experience encapsulated in the

velocity dispersion literature is that 7 galaxies is too few for determining a reliable

velocity dispersion, and a cutoff of around 20 (e.g. Girardi et al., 1993), 25, 30 or more

(e.g. Girardi et al., 1996; Zhang et al., 2011), is usually used in studies of ensembles.

We can rephrase the lesson learned from the above calculation as follows: we need

to observe as few masks per cluster as is necessary for a reliable determination of

cluster membership. Considering this result and following the cited velocity dispersion
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literature, we have adopted a target of Nmembers ∼ 20−30 to yield a reliable dispersion

for a cluster. To achieve this target range of Nmembers, we generally need to observe

two masks per cluster on the spectrographs available to us. The use of a red-sequence

color selection is a necessary feature of this strategy to target likely cluster members

and maximize the cluster members per mask (r, as defined above), as a small number

of multislit masks only allows us to target a small fraction of the galaxies in the region

of the sky around the SZ center.

As a side note, from the discussion above, in particular equation 3.6, we see that

there is no important statistical gain in the knowledge of the mass of a single cluster

when Nmembers is larger than the value for which

3

2

√
2

Nmembers − 1
= 0.35 (3.9)

⇒ Nmembers = 38. (3.10)

Of course data on more members could be useful for studies other than the mass, like

substructure, the study of mass systematics, or galaxy evolution.

Note that while obtaining two masks per cluster is our strategy in view of mass

calibration, some of the observations presented in Section 3.3 depart from that model

and have only one mask observed, with correspondingly fewer members. In some

cases, the second mask has yet to be observed, and other observations come from a

number of programs with different objectives, for instance the identification and char-

acterization of high-redshift clusters, the follow-up of bright sub-millimeter galaxies,

and long slit observations from the early days of our follow-up program. Finally, some

clusters of special interest were targeted with more than 2 masks. The spectroscopic

follow-up of high-redshift clusters to obtain their redshift has been very important
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for many aspects of the SPT multi-wavelength follow-up. The limited telescope time

available for the optical imaging of SPT clusters meant that the observations were of-

ten just deep enough for confirmation (or, the confirmation came from Spitzer/IRAC

infrared imaging) but too shallow for an accurate red-sequence photometric redshift,

for clusters at z & 0.8, and certainly at z > 1.0, spectroscopy was not an inefficient

way to get a reliable redshift.

A note about Nmembers ≥ 15: In discussions throughout this document, espe-

cially in Chapter 6, we often use a Nmembers ≥ 15 cut for “reliable” dispersions. We

note that this number is chosen somewhat arbitrarily, in line with literature in the

field, for the conservative exclusion of systems with very few members. As we will

see, especially in the resampling analysis of section 5.3, there is no overwhelming

statistical evidence for using that exact number, except that for fewer members, the

errors and the evaluation of confidence intervals are not as well-behaved.

3.2 Observations: South Pole Telescope

Most of the galaxy clusters for which we report spectroscopic observations (our

own measurements for 60 of them and 20 from the literature, with 5 overlapping)

were published as SPT cluster detections (and new discoveries) in Vanderlinde et al.

(2010), Williamson et al. (2011), and Reichardt et al. (2013); we refer the reader to

those publications for details of the SPT observations. The SPT IDs of the clusters

and their essential SZ properties are presented in Table 3.1. They include the right

ascension and declination of the SZ center, the cluster redshift (from optical spec-

troscopy, included here for reference), and the SPT detection significance ξ. For those
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clusters at redshift z ≥ 0.3, which is the range used for the SPT cosmological analysis

(Vanderlinde et al., 2010), we also report M500c,SZ, the mass estimate from the SPT

analysis (Reichardt et al., 2013). It is important to keep in mind that M500c,SZ is

determined from either the SZ data alone or the joint mass estimate from the SZ plus

X-ray data, where X-ray measurements are available; the perhaps misleading name is

chosen to be in line with SPT publications. The uncertainty in M500c,SZ includes un-

certainty in the scaling relation and cosmological parameters, as described by Benson

et al. (2013).

There are 12 clusters that do not appear in prior SPT publications, and are

presented here as SPT detections for the first time. Five of them are new discoveries

(identified with * in Table 3.1), and the other seven were previously published as ACT

detections (Marriage et al., 2011, identified with ** in Table 3.1). The associated SPT

observations will be reported in a future SPT cluster catalog paper for the complete

2500-deg2 SPT-SZ survey, as part of a much larger set of new SPT detections and

cluster discoveries.

52



Chapter 3: A spectroscopic follow-up program for the SPT-SZ cluster survey

Table 3.1: SPT properties and source of spectroscopic data
(This table is continued on the next page.) SPT ID of each cluster, right ascension and
declination of its SZ center, and redshift z (from Tables 6.2 and 6.4, for reference).
Also given are the SPT significance ξ and the SZ-based mass, marginalized over
cosmological parameters as in Reichardt et al. (2013), for those clusters at z ≥ 0.3.
Clusters marked with ** are reported here as SPT detections for the first time, and
those with * are new discoveries. References: (1) Sifón et al. (2012); (2) Girardi et al.
(1996); (3) Struble & Rood (1999, this paper does not contain confidence intervals);
(4) Barrena et al. (2002); (5) Katgert et al. (1998); (6) Buckley-Geer et al. (2011).

SPT ID R.A. Dec. z ξ M500c,SZ Source of spectro.

(J2000 deg.) (J2000 deg.) (1014h−1
70 M�) this work literature

SPT-CL J0000-5748 0.2387 −57.8063 0.702 7.71 4.32± 0.75 Y
SPT-CL J0014-4952* 3.6913 −49.8729 0.752 8.90 5.46± 1.11 Y
SPT-CL J0037-5047* 9.4382 −50.7938 1.026 6.94 4.07± 0.93 Y
SPT-CL J0040-4407 10.2020 −44.1312 0.350 19.10 10.14± 2.00 Y
SPT-CL J0102-4915 15.7271 −49.2562 0.870 39.58 15.54± 3.39 1
SPT-CL J0118-5156* 19.5932 −51.9396 0.705 5.59 3.50± 0.93 Y
SPT-CL J0205-5829 31.4437 −58.4856 1.322 10.54 4.82± 0.96 Y
SPT-CL J0205-6432 31.2786 −64.5461 0.744 6.02 3.39± 0.82 Y
SPT-CL J0232-5257** 38.1813 −52.9562 0.556 8.83 5.46± 1.11 1
SPT-CL J0233-5819 38.2561 −58.3269 0.663 6.64 3.79± 0.86 Y
SPT-CL J0234-5831 38.6790 −58.5217 0.415 14.65 7.71± 1.50 Y
SPT-CL J0235-5120** 38.9443 −51.3479 0.278 9.28 - 1
SPT-CL J0236-4937** 39.2401 −49.6312 0.334 5.76 3.89± 0.96 1
SPT-CL J0240-5946 40.1620 −59.7703 0.400 9.04 5.32± 1.11 Y
SPT-CL J0245-5302 41.3780 −53.0360 0.300 19.30 9.40± 3.02 Y
SPT-CL J0254-5857 43.5729 −58.9526 0.437 14.42 7.61± 1.46 Y
SPT-CL J0257-5732 44.3516 −57.5423 0.434 5.40 3.21± 0.86 Y
SPT-CL J0304-4921** 46.0559 −49.3563 0.392 12.36 7.43± 1.43 1
SPT-CL J0317-5935 49.3208 −59.5856 0.469 5.91 3.54± 0.89 Y
SPT-CL J0328-5541 52.1663 −55.6975 0.084 7.08 - 3
SPT-CL J0330-5227** 52.7237 −52.4646 0.442 11.38 6.36± 1.21 1
SPT-CL J0346-5438** 56.7210 −54.6479 0.530 8.42 4.86± 1.00 1
SPT-CL J0431-6126 67.8393 −61.4438 0.059 6.40 - 2
SPT-CL J0433-5630 68.2522 −56.5038 0.692 5.35 2.96± 0.82 Y
SPT-CL J0438-5419 69.5686 −54.3187 0.422 22.24 10.43± 2.07 Y 1
SPT-CL J0449-4901* 72.2684 −49.0187 0.790 8.83 4.79± 0.93 Y
SPT-CL J0509-5342 77.3360 −53.7045 0.462 6.61 5.36± 0.71 Y 1
SPT-CL J0511-5154 77.9202 −51.9044 0.645 5.63 3.71± 0.93 Y
SPT-CL J0516-5430 79.1480 −54.5062 0.294 9.42 - Y
SPT-CL J0521-5104 80.2983 −51.0812 0.675 5.45 3.54± 0.96 1
SPT-CL J0528-5300 82.0173 −53.0001 0.769 5.45 3.21± 0.57 Y 1
SPT-CL J0533-5005 83.3984 −50.0918 0.881 5.59 2.75± 0.61 Y
SPT-CL J0534-5937 83.6018 −59.6289 0.576 4.57 2.86± 1.00 Y
SPT-CL J0546-5345 86.6541 −53.7615 1.066 7.69 5.29± 0.71 Y 1
SPT-CL J0551-5709 87.9016 −57.1565 0.424 6.13 3.82± 0.54 Y
SPT-CL J0559-5249 89.9245 −52.8265 0.609 9.28 6.79± 0.86 Y 1
SPT-CL J0616-5227** 94.1393 −52.4562 0.684 9.29 5.64± 1.14 1
SPT-CL J0658-5556 104.6249 −55.9479 0.296 37.67 - 4
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Table 3.1: SPT properties and source of spectroscopic data (continued)

SPT ID R.A. Dec. z ξ M500c,SZ Source of spectro.

(J2000 deg.) (J2000 deg.) (1014h−1
70 M�) this work literature

SPT-CL J2012-5649 303.1132 −56.8308 0.055 5.99 - 2
SPT-CL J2022-6323 305.5235 −63.3973 0.383 6.58 3.89± 0.89 Y
SPT-CL J2032-5627 308.0800 −56.4557 0.284 8.14 - Y
SPT-CL J2040-5725 310.0631 −57.4287 0.930 6.38 3.29± 0.79 Y
SPT-CL J2043-5035 310.8285 −50.5929 0.723 7.81 4.79± 1.00 Y
SPT-CL J2056-5459 314.2199 −54.9892 0.718 6.05 3.21± 0.79 Y
SPT-CL J2058-5608 314.5893 −56.1454 0.606 5.02 2.71± 0.79 Y
SPT-CL J2100-4548 315.0936 −45.8057 0.712 4.84 2.82± 0.89 Y
SPT-CL J2104-5224 316.2283 −52.4044 0.799 5.32 3.14± 0.86 Y
SPT-CL J2106-5844 316.5210 −58.7448 1.131 22.08 8.39± 1.68 Y
SPT-CL J2118-5055 319.7291 −50.9329 0.625 5.62 3.54± 0.89 Y
SPT-CL J2124-6124 321.1488 −61.4141 0.435 8.21 4.71± 1.00 Y
SPT-CL J2130-6458 322.7285 −64.9764 0.316 7.57 4.54± 0.96 Y
SPT-CL J2135-5726 323.9158 −57.4415 0.427 10.43 5.75± 1.11 Y
SPT-CL J2136-4704 324.1175 −47.0803 0.425 6.17 4.11± 0.96 Y
SPT-CL J2136-6307 324.2334 −63.1233 0.926 6.25 3.25± 0.75 Y
SPT-CL J2138-6007 324.5060 −60.1324 0.319 12.64 6.82± 1.32 Y
SPT-CL J2145-5644 326.4694 −56.7477 0.480 12.30 6.46± 1.25 Y
SPT-CL J2146-4633 326.6473 −46.5505 0.931 9.59 5.43± 1.07 Y
SPT-CL J2146-4846 326.5346 −48.7774 0.623 5.88 3.71± 0.93 Y
SPT-CL J2148-6116 327.1798 −61.2791 0.571 7.27 4.11± 0.89 Y
SPT-CL J2155-6048 328.9851 −60.8072 0.539 5.24 2.93± 0.79 Y
SPT-CL J2201-5956 330.4727 −59.9473 0.098 13.99 - 5
SPT-CL J2248-4431 342.1859 −44.5271 0.351 40.97 17.29± 3.71 Y
SPT-CL J2300-5331 345.1765 −53.5170 0.262 5.29 - Y
SPT-CL J2301-5546 345.4688 −55.7758 0.748 5.19 3.21± 0.93 Y
SPT-CL J2325-4111 351.2985 −41.1937 0.358 12.27 7.36± 1.43 Y
SPT-CL J2331-5051 352.9584 −50.8641 0.575 8.04 5.14± 0.71 Y
SPT-CL J2332-5358 353.1040 −53.9733 0.402 7.30 6.54± 0.82 Y
SPT-CL J2337-5942 354.3544 −59.7052 0.776 14.94 8.21± 1.14 Y
SPT-CL J2341-5119 355.2994 −51.3328 1.002 9.65 5.61± 0.82 Y
SPT-CL J2342-5411 355.6903 −54.1887 1.075 6.18 3.00± 0.50 Y
SPT-CL J2344-4243 356.1817 −42.7229 0.595 27.53 12.39± 2.54 Y
SPT-CL J2347-5158* 356.9423 −51.9766 0.869 4.36 2.32± 0.96 Y
SPT-CL J2351-5452 357.8877 −54.8753 0.384 4.89 3.32± 1.04 6
SPT-CL J2355-5056 358.9551 −50.9367 0.320 5.89 4.11± 0.54 Y
SPT-CL J2359-5009 359.9208 −50.1600 0.775 6.35 3.57± 0.57 Y

3.3 Observations: optical spectroscopy

Instruments

The spectroscopic observations presented in this work are the first of our ongoing

follow-up program. The data were taken from 2008 to 2012 using the Gemini Multi

Object Spectrograph (GMOS; Hook et al., 2004) on Gemini South, the Focal Reducer
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and low dispersion Spectrograph (FORS2; Appenzeller et al., 1998) on VLT Antu, the

Inamori Magellan Areal Camera and Spectrograph (IMACS; Dressler et al., 2006) on

Magellan Baade, and the Low Dispersion Survey Spectrograph (LDSS31; Allington-

Smith et al., 1994) on Magellan Clay.

In order to place a large number of slitlets in the central region of the cluster, most

of the IMACS observations were conducted with the Gladders Image-Slicing Multi-

slit Option (GISMO2). GISMO optically remaps the central region of the IMACS

field-of-view (roughly 3.5′ × 3.2′) to sixteen evenly-spaced regions of the focal plane,

allowing for a large density of slitlets in the cluster core while minimizing slit collisions

on the CCD. This is illustrated in Figure 3.1; the first stage of the remapping optics

is visible in Figure 3.2, a photograph of the instrument.

1http://www.lco.cl/telescopes-information/
magellan/instruments/ldss-3

2http://www.lco.cl/telescopes-information/
magellan/instruments/imacs/gismo/gismoquickmanual.pdf
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Figure 3.1: Footprint of GISMO input and output in the IMACS f/4 focal plane. The
dispersion axis is left to right; compare this figure to the spectral traces in Figure 4.1.
The field of view of the IMACS f/4 camera is a 15.46′×15.46′ square, and the central
non-rectangular region that is remapped has dimensions of roughly 3.5′ × 3.2′.
Image credit: Mike Gladders/LCO, http://www.lco.cl/telescopes-information/
magellan/instruments/imacs/gismo/gismoquickmanual.pdf
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Figure 3.2: Photo of GISMO, where the slicing mirrors in the center are visible.
Image credit: Mike Gladders/LCO, http://www.lco.cl/telescopes-information/
magellan/instruments/imacs/gismo/gismoquickmanual.pdf

Upstream data

Optical and infrared follow-up imaging observations of SPT clusters are presented

alongside our group’s photometric redshift methodology in High et al. (2010) and

Song et al. (2012). Those photometric redshifts (and in a few cases, spectroscopic

redshifts from the literature) were used to guide the design of the spectroscopic ob-

servations. Multislit masks were designed using the best imaging available to us, usu-

ally a combination of ground-based griz (on Blanco/MOSAIC2, Magellan/IMACS,

Magellan/LDSS3, or BV RI on Swope) and Spitzer/IRAC 3.6µm. In addition, spec-
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troscopic observations at Gemini and VLT were preceded by single-band (r or i) pre-

imaging for relative astrometry, or two-band (r and i) pre-imaging for red-sequence

target selection in the cases where the existing imaging was not deep enough. The ex-

posure times for this pre-imaging were chosen to reach a magnitude depth for galaxy

photometry of m? + 1 at 10σ at the cluster redshift.

Mask design

In designing the multislit masks, top priority for slit placement was given to

bright red-sequence galaxies (the red sequence of SPT clusters is discussed in the

context of photometric redshifts in High et al., 2010; Song et al., 2012), as defined by

their distance to either a theoretical or an empirically-fit red-sequence model. The

details varied depending on the quality of the available imaging, the program and the

prioritization weighting scheme of the instrument’s mask-making software. In many

of the GISMO observations and some of the Gemini observations, blue galaxies were

given higher priority than faint red galaxies because, especially at high redshift, they

were expected to be more likely to yield a redshift. An example of color cuts used in

mask design is shown in Figure 3.3.

The results from the different red-sequence weighting schemes are very similar,

and few emission lines are found, even at high redshift (z > 1; Brodwin et al., 2010;

Foley et al., 2011; Stalder et al., 2013, these articles also provide more details about

the red-sequence nature of spectroscopic members). In all cases, non-red-sequence

objects were used to fill out any remaining space in the mask. Figure 3.4 shows

the same color-magnitude diagram as Figure 3.3, where the spectroscopic members
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from the observation of one multislit mask are shown in red, and the spectroscopic

non-members are shown in green.
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Figure 3.3: Color-Magnitude Diagram of objects in the SPT-CLJ0438-5419 field-of-
view. The straight line shows an empirical red-sequence, and the colors classes of
objects given different weights in the design of spectroscopic masks. The classes are
bright red (red), bright blue (blue), faint blue (teal) and faint red (purple). An optical
image of SPT-CLJ0438-5419 is found in Figure 1.1
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Figure 3.4: Color-Magnitude Diagram of objects in the SPT-CLJ0438-5419 field-of-
view. The spectroscopic members and non-members from the observation of one mask
are shown in red and green, respectively. The central galaxy (and BCG, brightest
cluster galaxy) is the leftmost red point. An optical image of SPT-CLJ0438-5419 is
found in Figure 1.1

Detail of observations

Details about the observations pertaining to each cluster, including the instru-

ment, optical configuration, number of masks, total exposure time, and measured

spectral resolution are listed in Table 3.2.

The dispersers and filters, listed in Table 3.2, were chosen (within the uncertainty

in the photo-z) to obtain low- to medium-resolution spectra covering at least the

60



Chapter 3: A spectroscopic follow-up program for the SPT-SZ cluster survey

wavelengths of the main spectral features that we use to identify the galaxy redshifts:

[O II] emission, and the Ca II H&K absorption lines and break.

The spectroscopic exposure times (also in Table 3.2) for GMOS and FORS2 ob-

servations were chosen to reach S/N = 5 (S/N = 3) per spectral element just below

the 4000Å break for a red galaxy of magnitude m? + 1 (m? + 0.5) at z < 1 (z > 1).

Under the observing conditions prevailing at the telescope during classical observing,

the exposure times for the Magellan observations were determined by a combination

of experience, real-time quick-look reductions, and airmass limitations.
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Chapter 4

Spectroscopic data processing

In this chapter, we present a quick review of the different steps of the data pro-

cessing, with a special mention of details specific to multi-object spectroscopy, and

the use of the GISMO instrument. It is also our hope that the figures in particular

will provide the reader with a more concrete sense of the data that produced the

numbers presented in Chapter 6.

Most of the following explanations apply to general spectroscopic CCD observa-

tions; however, some details would be different for instruments other than the ones

that we have used (IMACS/GISMO, GMOS and FORS2; see 3.3), most notably

fiber-fed spectrographs, which we will not discuss as we have not used them.

A general introduction and reference for the astronomical use of CCDs is Howell

(2006).
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Chapter 4: Spectroscopic data processing

4.1 CCD reductions

In a spectroscopic observation, the light from the galaxies which we want to ob-

serve is dispersed by a grating or grism (a combination of a grating and prism), and

the dispersed trace is imaged by a CCD. To create a dispersed image that is easy

to interpret and process, a mask milled from an aluminum plate is inserted into the

telescope beam and precisely aligned on the sky to block the light from the sky and

from all objects in the camera’s field of view, except for a number of slits that let the

light of the target galaxies through, as well as some of the sky to allow for determi-

nation – and subtraction – of the sky spectrum. In the image, each slit produces a

rectangle where the short axis is a spatial coordinate on the sky, and the long axis is

mapped to the wavelength. The object spectrum is spatially localized at the center

of the slit, and superimposed on the sky spectrum which has no spatial dependence.

See the bottom image of Figure 4.2 for an exemple.

The CCD is an array of silicon pixels; during an exposure, photons create free

electron-hole pairs in the silicon that remain trapped in the pixel until readout. Dur-

ing readout, the pixel values are read sequentially, pixel by pixel, column by column.

The readout amplifier converts the voltage from the electrons in each pixel to a digital

number, in ADUs, or analog-to-digital units. The number of electrons corresponding

to an ADU is called the gain. It has units of electrons per ADU.

For the CCD reductions described in this section, we used the COSMOS reduction

package1 (Kelson, 2003) for CCD reductions of IMACS and LDSS3 data, and standard

1http://code.obs.carnegiescience.edu/cosmos
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IRAF routines and XIDL2 routines for GMOS and FORS2. Of those packages, the

author has the most experience with COSMOS.

Bias subtraction and flat-fielding

At readout time, a bias level is added to the counts in ADUs to avoid negative

count values. This bias varies spatially across the CCD and can be measured by

taking a number of bias frames, or zero-second exposures. The afternoon calibrations

at the telescope usually involve taking at least 10 such frames. Their average (with

rejection of high values, as there can be cosmic rays even in bias frames) is the bias

level to be subtracted from all other types of exposures. An example of a bias frame

is shown as the first element of Figures 4.1 and 4.2.

The other essential calibration frame type for both imaging and spectroscopy is a

flat frame, for flat-fielding. Flat-fielding serves to correct the response of each pixel to

a reference illumination. This response is dependent on wavelength and so different

flat frames must be used for different filters, and in the case of spectroscopy, different

dispersers and masks, which will change the wavelength solution (see below).

The flat frames are taken by exposing a uniform light to a high number of counts

per pixel. In the case of spectroscopy, a smooth 2-dimensional illumination function

is fit to each slit. If we call the number of counts of this smooth fit the model, then

the response of each pixel is actual counts divided by model. Flat-fielding means

dividing the counts by the response.

The strictest, most basic meaning of CCD data reduction is bias subtraction and

2http://www.ucolick.org/˜xavier/IDL/
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flat-fielding, which produce counts in units of ADUs. When the detector is a mosaic

of multiple chips, it is also necessary to correct for the gain, which varies chip by

chip, to convert the counts to units of electrons. These steps have to be done for both

imaging and spectroscopy.

Schematically, the basic reduction is ( exposure - bias )/response.
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Figure 4.1: Raw exposures from the IMACS f/4 camera. The camera has eight CCD
chips, hence each exposure is a mosaic of eight chips. There are small chipgaps not
shown here. The top left mosaic is a bias frame, the top right an arc frame, the
bottom left is a spectroscopic flat, and the bottom right is a science exposure. A
subsection of these exposures is shown with greater magnification in Figure 4.2
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Figure 4.2: Detail of raw exposures from the IMACS f/4 camera; these are the same
exposures as shown in Figure 4.1. From top to bottom, these are a bias frame, an arc
frame, a spectroscopic flat, and a science exposure. The discontinuity in the center is
a chip gap.
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Figure 4.3: Detail of processed exposures from the IMACS f/4 camera; these are the
same traces as shown in Figure 4.2. From top to bottom, these are 1) the response
function for flat-fielding, as computed from the flat frame, 2) a bias-subtracted, flat-
fielded arc-frame showing the location of the lines as computed using the wavelenght
solution, 3) a bias-subtracted, flat-fielded science exposure, and 4) the same science
exposure after sky subtraction.

Wavelength calibration

Wavelength calibration is based on arc lamp exposures, obtained at night in be-

tween science exposures in the case of IMACS and LDSS3, and during day time in

the same configuration as for science exposures for GMOS and FORS2. In the case

of day-time arc frames, the wavelength calibration was refined using sky lines in the

science exposures.

Typically, the trace of each slit is aligned so that there is a rough correspondance

between e.g. the rows or the x axis of the pixels and the wavelength, and the columns

or the y axis and the spatial direction along the slit, but small distortions really
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make it such that the wavelength is a function of both x and y. Getting a good

two-dimensional wavelength solution is important not only for doing the science that

depends on the wavelength, but also the sky subtraction (see below).

The distortion in the slit is mapped in x and y by cross-correlating rows with one

another in an arc frame, globally and in wavelength segments, from which a remapped

slit where the new x′ and y′ truly correspond to wavelength and spatial position can

be constructed. The wavelength can then be calibrated to nanometers because the arc

lines are easy to identify and have known wavelengths; for instance, they are Helium,

Neon and Argon lines for IMACS.

The combination of distortion and wavelength solution is typically well fit by a

third-order polynomial in x and y for IMACS data.

The second image of Figure 4.3 shows the detail of an arc frame where the fit

location of lines is superimposed on the exposure (as does the first image of Figure

4.4, in a slightly more complicated situation of trace overlap).

Sky subtraction

We use the “optimal” sky substraction algorithm of Kelson (2003).

The simplest sky-subtraction algorithm that we could imagine would be to use

the distortion map and wavelength solution to resample the image and produce an

image where the coordinates are y vs λ. We call this step rectification. One can then

define some range or ranges of y to be the sky, and then produce a model of the sky

as a function of lambda, and subtract it everywhere.

The Kelson (2003) algorithm does the sky subtraction before rectification, which
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leaves fewer artifacts in the sky-subtracted, rectified 2d spectrum than the simpler

procedure just outlined. High pixels are rejected in a robust way that looks at a

few-column average at a time, so as to exclude both the object spectrum and cosmic

rays, but not bright sky lines. After the rejection, one is left with the “sky pixels”.

The distortion map yields a wavelength for each pixel, and the sky spectrum is

spline-interpolated from the λ, flux pairs of the sky pixels.

This sky spectrum is then resampled at the λs of all the pixels, to create the

two-dimensional sky model that is subtracted.

The bottom two images of Figure 4.3 shows a detail of a bias-subtracted, flat-

fielded science exposure before sky subtraction (third image from the top) and after

sky subtraction (bottom image). The bottom image of Figure 4.4 also shows a sky-

subtracted science frame in a slightly more complicated situation of trace overlap.
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Figure 4.4: Overlap of slits on the CCD. The top panel shows the wavelength solution,
and the bottom panel a sky-subtracted science exposure.
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Considerations specific to multi-object spectroscopy

For the most part, mutli-object spectroscopy is not different from single-slit or

long slit spectroscopy, as each slit can be reduced independently.

An added complication is that of trace collisions, where either 1) the trace from

two different slits overlap or 2) in the case of grating dispersion, zeroth-order light

from a slit overlaps with another slit (the first-order, dispersed slit proper), potentially

causing problems in the wavelength solution and sky subtraction.

Trace collisions should not happen often in well-designed masks, however the

extent of the trace in the wavelength direction depends on the filter response and

intensity of the light, so can become a potential issue in arc frames and flat frames,

which are very bright.

For our Gemini observations, any row on the CCD had at most one slit (in other

words the slits were stacked vertically) so this was not a problem. It was a problem,

however, in the case of GISMO because of the remapping.

Figure 4.4 shows a region of an IMACS / GISMO exposure where slit ends overlap.

In principle, the reduction software could be made to recognize and exclude such

regions of overlap. The COSMOS software does not do that, and the volume of data

in this study was manageable enough for the author to verify each wavelength solution

fit by eye. The wavelength fits were largely unaffected, and any failures could be fixed

by rejection of problematic lines from the fit. The first image of Figure 4.4 shows the

location of lines computed from the wavelength solution, overplotted on an arc frame.

Even with a good wavelength solution, the sky subtraction was still problematic

in collisions, given the algorithm used by COSMOS. This too could have been noted
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in the software in a well-integrated pipeline. In the present case, the subsequent

extraction and analysis of the extracted spectrum were always done with inspection

of the 2d spectrum, so in the small number of occurences of bad sky subtraction due

to collisions, the bad regions were excluded from fits manually. The second image of

Figure 4.4 shows the sky-subtracted collision region.

4.2 Extracted spectrum processing

and cross-correlation for velocity

Flux calibration

Flux calibration and telluric line removal were performed using the well-exposed

continua of spectrophotometric standard stars (Wade & Horne, 1988; Foley et al.,

2003). On the night of the observations, a standard star observable at a similar

airmass to the science targets was observed using the same optical configuration as

the science observations. The processed, extracted 1d spectrum flux level is compared

to tabulated values, so that the relative response of the instrument as a function of

wavelength can be inferred and modeled via a spline fit. The amount of sky absorption

in regions of the spectrum where it is known to happen is then computed by the

difference between the spline-fit continuum level and the measured level.
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Cross-correlation for velocity

Fitting spectral features with known rest-frame wavelengths to the observed spec-

trum yields a redshift zi for each galaxy, via

λobserved = λrest(1 + zi). (4.1)

The redshift determination was performed by the author using cross-correlation

with the fabtemp97 template in the RVSAO package (Kurtz & Mink, 1998) for IRAF

or by a collaborator with an in-house template fitting method using the SDSS DR2

templates. In all cases the fits were validated by agreement with visually identified

absorption or emission features. A single method was used for each cluster depending

on the workflow, and both perform similarly. Comparison between those redshifts

obtained from the continuum and emission-line redshifts, when both are available

from the same spectrum, shows that the uncertainties in individual redshifts (twice the

RVSAO uncertainty, see e.g. Quintana et al., 2000) correctly represent the statistical

uncertainty of the fit.

RVSAO is a collection of several different routines, of which we used xcsao for de-

termining the redshift from absorption features, and emsao for emission lines. Screen

grabs of both routines are shown in Figures 4.5 and 4.6.

Because we had the criterion that the redshift determination needed to be con-

firmed by eye by an identifiable absorption or emission feature, the accuracy of the

automatic fitting offered by those routines is not an issue that needs to be considered.

xcsao fits and subtracts the continuum from the spectrum and uses cross-correlation

with an absorption-line template to determine the redshift. There is information lost

in subtracting the continuum, but it also eliminates the requirement of a good flux
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calibration. Given our requirement of a visual confirmation of the redshift, cases

where we would have had a low-confidence fit from the continuum only were dis-

carded. Also, comparison with the template fitting method showed no significant

difference in the ability to retrieve redshifts.

xcsao was run interactively, so that the correct local maximum of the cross-

correlation could be picked manually. Also, one of the user-defined parameters is

the wavelength range within which the cross-correlation is calculated. This range was

adjusted to exclude any regions of bad sky subtraction, be it due to trace overlaps,

or other reasons like zeroth-order light.

emsao, like xcsao, fits and subtracts the continuum. Gaussian profiles are fit to

emission lines, and running the routine interactively allows to exclude or add lines to

those found automatically.
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Figure 4.5: Screen grab of the xcsao routine showing the cross-correlation fit to a red
galaxy spectrum by labeling the absorption lines. The Ca II H&K lines just below
a break in the continuum level makes this an unambiguous identification. Most red-
sequence galaxies with a redshift in our sample had their redshift identified from these
same features.
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Figure 4.6: Screen grab illustrating the use of the emsao routine to fit a redshift to
the extraordinary emission spectrum of the central galaxy of SPT-CL J2344-4243, a
very massive SPT cluster at z = 0.595. This particular cluster is studied in McDonald
et al. (2012).
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Methods and statistics of velocity

dispersion measurements

In this chapter, we review and develop the different mathematical steps that allow

us to go from the measured redshifts of individual galaxies to a cluster redshift and

cluster velocity dispersion with appropriate uncertainties. We review methods that

are de facto standard in the velocity dispersion literature in Section 5.1, and then

move on to using our data (to be presented in Chapter 6) for a statistical exploration

using resampling, in Sections 5.2 and 5.3.
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5.1 Standard methods

5.1.1 From redshifts to peculiar velocities

Fitting spectral features with known rest-frame wavelengths to the observed spec-

trum yields a redshift zi for each galaxy, via

λobserved = λrest(1 + zi). (5.1)

This observed redshift has contributions from three different sources: the Doppler

shift due to the peculiar velocity of the Earth with respect to the CMB (1 + z⊕), the

contribution from the cosmological redshift of the cluster (1 + z̄), and the Doppler

shift due to the peculiar velocity of the galaxy within the cluster, (1 + zp,i):

(1 + zi) = (1 + z⊕)(1 + z̄)(1 + zp,i). (5.2)

In theory, the cluster also has a proper velocity with respect to its cosmological co-

moving frame, but we omit it because in practice we cannot separate its contribution

from the cosmological redshift. Also, it is customary to account for the (1+z⊕) factor

at the stage of wavelength calibration in the reductions, or in the fitting of spectral

features, so that the measured redshifts are really defined by

(1 + zi) = (1 + z̄)(1 + zp,i). (5.3)

Expanding the right-hand side and subtracting 1 on each side gives

zi = z̄ + (1 + z̄)zp,i (5.4)

The peculiar velocities are such that their average over the galaxies of the cluster

is zero: 〈zp,i〉 = 0. Therefore, taking the average of both sides of Equation 5.4 yields

z̄ = 〈zi〉 . (5.5)
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In other words, the cosmological redshift is the average redshift of the member galaxies

in the cluster.

The cluster velocity dispersion that we wish to measure is the dispersion of the

proper velocities vp,i ≡ czp,i. Solving Equation 5.4 for zp,i gives

vp,i = czp,i =
c(zi − z̄)

1 + z̄
. (5.6)

In other words, the redshift differences that we measure need to be corrected for

the cosmological redshift to yield correct proper velocities.

5.1.2 Dispersion and velocity errors

Measurement errors in the individual galaxy redshifts potentially affect the mea-

surement of the dispersion. This effect is explained in detail in Danese et al. (1980),

and the associated correction has become a standard step in the calculation of the ve-

locity dispersion. For the spectral resolution of our observations, this error correction

is not significant, and will correct a measured dispersion of 1000 km s−1 by at most

several km s−1. We present it here nonetheless, for two reasons. First, its calculation

was part of the analysis code. Second, the author has also participated in non-SPT

study (Brodwin et al., 2011) with lower resolution Keck/LRIS and Hubble/WFC3

grism spectroscopy where this correction was important.

The effect is statistically well-known: random errors do not affect the calculation of

averages, but enlarge variances. If we think of the distribution of peculiar velocities as

a normal distribution and of the measurement errors as a smaller normal distribution,

then the distribution of observed velocities will be the convolution of the two, which

has the same mean but a larger variance than the “true” variance.
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Let us write the redshifts as the true redshift plus an error:

zi = zi,true + ∆zi. (5.7)

Then

z̄ = 〈zi〉 = 〈zi,true〉+ 〈∆zi〉 . (5.8)

On average, 〈∆zi〉 = 0, so that the cosmological redshift is unbiased by errors, as

would be expected.

The measured peculiar velocity is

vp,i =
c(zi,true + ∆zi − 〈zj〉)

1 + 〈zj〉
(5.9)

The measured variance is

σ2 =
1

N − 1

N∑
i=1

v2
p,i (5.10)

=
1

N − 1

N∑
i=1

(
c(zi,true + ∆zi − 〈zj,true〉 − 〈∆zj〉)

1 + 〈zj,true〉+ 〈∆zj〉

)2

(5.11)

=
1

N − 1
c2

[
1

1 + 〈zj,true〉
+O

(
〈∆zj〉

(1 + 〈zj,true〉)2

)]2

×
N∑
i=1

[
(zi,true − 〈zj,true〉)2 + (∆zi − 〈∆zj〉)2

]
(5.12)

' σ2
true +

c2

(1 + z̄)2

1

N − 1

N∑
i=1

(∆zi − 〈∆zj〉)2 (5.13)

= σ2
true +

c2 〈(∆zi)2〉
(1 + z̄)2

(5.14)

In Equation 5.12, the denominator of the previous line was expanded as a Taylor

series, and the cross-term in the expansion of the square inside the summation was

omitted because as a first-order term in 〈∆zi〉, it is ultimately vanishing. In the last
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line, the sample variance of the ∆zi was replaced by their population variance, with

known population mean of zero.

Therefore, the amount of c2 〈(∆zi)2〉 /(1 + z̄)2 needs to be subtrated from the

measured σ2.

5.1.3 Phase-space membership selection

As explained in Chapter 1, the bulk dynamical properties of halos, such as the

velocity dispersion and its scaling relation with mass, have been investigated in N-

body simulations, where the dispersion can be defined in a precise physical radius of

the cluster.

In real data, we need a prescription to separate the galaxies that are in the cluster

from the galaxies that aren’t, based on their observed phase-space coordinates. This

step is usually called membership selection, although it might more aptly be named

something else, for instance membership classification, as it applies to the analysis of

the observed data.

Interlopers

One important thing to appreciate and understand about membership selection

is the presence of interlopers, galaxies that occupy the same projected phase-space

location as the cluster, but are not physically members of the cluster.

Figure 5.1, taken from Mamon et al. (2010), shows the line-of-sight velocity (vlos)

of galaxies as a function of the line-of-sight distance (Dlos) in a simulated light-cone

that contains a cluster of galaxies, the concentration of galaxies around (0, 0). Away

84



Chapter 5: Methods and statistics of velocity dispersion measurements

from the cluster, the galaxies follow the Hubble Law, vlos ∝ Dlos. The cluster galaxies

have a wide range of velocities, corresponding to the velocity dispersion of the cluster.

The figure shows that a velocity cut, for instance the 3σ cut shown as dashed red

lines in Figure 5.1, cannot separate all field galaxies from cluster galaxies and will

retain field galaxies whose Hubble velocity is consistent with large velocities within

the cluster; these are the interlopers. In real data, Dlos is not known, so the interlopers

and cluster galaxies are not separable.
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Figure 5.1: This figure from Mamon et al. (2010) shows the line-of-sight velocity of
galaxies (as would be observable from spectroscopy) as a function of the line-of-sight
distance (not observable, except for the galaxies closest to the Earth) in a simulated
light-cone that contains a cluster of galaxies. The axes of velocity and distance are
centered on the cluster. The red dashed lines enclose the galaxies that would be
selected as cluster members by a three-sigma cut in proper velocity.
Image credit: Mamon et al. (2010).
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Choice of membership selection algorithm

There are many prescriptions in the literature for separating cluster members from

non-members, in the form of a velocity cut for all galaxies, or a (projected-)radius-

dependent velocity cut. Many of them are physically motivated and based on years

of experience in the community, and give similar results on average (Girardi et al.,

1993; White et al., 2010), but ultimately we would like our choice of membership

algorithm to be precisely characterized by simulations to make sure that this step

does not introduce a bias.

Two algorithms are tested from recent simulations in the literature. The first one

is a radially-dependent velocity cut (den Hartog & Katgert, 1996; Biviano et al., 2006;

White et al., 2010), which we call “the phase-space method” in accordance with the

last reference. It essentially relies on using the observed velocities and positions of

the galaxies to construct a velocity dispersion profile, and use that profile to construct

a velocity cut dependent on the projected radius from the center of the cluster. In

terms of the velocity dispersion, it is close to a 2σ cut, and it is shown for our stacked

cluster in Figure 5.2. Reliance on the profile makes it not well fit to our program,

given our small sample sizes. We note that White et al. (2010) successfully apply it to

samples as small as 25 members. Another consideration is that these studies (like most

studies from simulations) sample observations from dark matter particles (or better,

dark-matter subhalos in White et al., 2010), so that the non-member and interloper

fractions and radial properties are likely to be different from our observations, where

we have observed mostly bright red-sequence galaxies.

Application of the phase-space method to our data yields a reasonable selection
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for most clusters, but also leads to a number of catastrophic failures where most

of the data points are rejected, and where the final dispersion is unphysically low,

around 300 km s−1. This includes the cluster for which we have the most redshifts,

SPT-CL J2331-5051. We conjecture that the algorithm would need to be changed for

a red-sequence selection, but these failures my also be due to cluster substructure.

The second algorithm that is tested in simulations and that is the natural choice

for our observations is 3-sigma clipping (Yahil & Vidal, 1977; Mamon et al., 2010;

Saro et al., 2012). Saro et al. (2012) employ mock red-sequence observations from

simulations and explore the interloper properties after 3σ clipping has been applied.

The interloper fraction is smaller than for random dark matter selection (see, e.g.,

Mamon et al., 2010). The measured velocity dispersion is biased high, and depending

on parameters such as the aperture of the observations, the mass and redshift of

the cluster, and magnitudes of the spectroscopic galaxies, the velocity bias ranges

from minus a few percent to about 10%. This may seem counter-intuitive, as the red

galaxies have had more time to be affected by dynamical friction in the cluster, and

indeed red-sequence member galaxies have a smaller velocity dispersion on average

than blue member galaxies (see, e.g., Girardi et al., 1996; Fadda et al., 1996; Hwang

& Lee, 2008). However it is the combination of spatial selection, color selection and

membership selection that will determine how the measured dispersion relates to the

true dispersion for the halo.

In Figure 5.1, a 3σ cut in galaxy-cluster velocities is shown by red dashed lines; it

is also a black dashed line in the plots showing the stacked cluster, Figures 5.2 and

5.3.
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5.1.4 Resistant and robust estimators

Velocity studies of clusters of galaxies are inherently difficult in that they are

dealing with ill-characterized systematic uncertainties in the sampling, membership

and source velocity distribution. As a result, it has become customary to calculate

the average (cosmological) redshift and the velocity dispersion in ways that are, as

much as possible, insensitive to those effects.

Beers et al. (1990) describes in some detail the properties of resistant and robust

estimators. Resistance means that the estimate does not change much when a number

of data points are replaced by other values; the median is a well-known example of a

resistant estimator. Robustness means that the estimate does not change much when

the distribution from which the data points are drawn is varied.

The cluster redshift is usually calcluated via the biweight average, which is given

by

zBI = M +

∑
|ui|<1(1− u2

i )
2(zi −M)∑

|ui|<1(1− u2
i )

2
(5.15)

with

ui =
zi −M

6MAD(zi)
, (5.16)

where M is the median redshift, and MAD(zi) is the median absolute deviation of

the redshifts:

MAD(zi) = median(|zi −M |). (5.17)

For normally distributed random variables, σ ' 1.48MAD, so that 6MAD ' 4σ.

The biweight average is part of a mathematical family of location estimators

called M -estimators. With a proper choice of weighting functions, M -estimators can

be constructed that interpolate smoothly between the median and the average, and
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the biweight retains similarities to both. As can be seen from the formula above, it is

really a weighted average with a weighting function that does a hard sigma-clipping

around the median, with sigma estimated through the median absolute deviation.

The weighting function (1−u2
i )

2 was called the “bi-square weight” because of the two

squares, hence the name biweight.

Beers et al. (1990) also presents the formula for the biweight velocity dispersion.

However, that estimator (or more correctly, the associated variance) is biased for

samples, in the same way that calculating the variance of data points xi as 1
N

∑
(xi−

〈xi〉)2 would yield a biased value for a sample, compared to the true value σ2, and

the sample variance 1
N−1

∑
(xi − 〈xi〉)2 is preferred in that case to yield an unbiased

estimate of the underlying population’s variance.

Anecdotally, we know that the fact that the Beers et al. (1990) estimator is biased

is often recognized by researchers who use an unbiased version and nonetheless simply

quote Beers et al. (1990), making it in effect impossible to know for sure which version

any study from the literature has used. Also, the implementation of the Fortran code

companion to Beers et al. (1990)1 contains a partial correction of this bias, in a factor

of
√
n/(n− 1) multiplying the dispersion.

We use the biweight sample variance (see, e.g., Mosteller & Tukey, 1977)

σ2
BI = Nmembers

∑
|ui|<1(1− u2

i )
4(vi − v̄)2

D(D − 1)
(5.18)

where vi are the proper velocities, v̄ their average,

D =
∑
|ui|<1

(1− u2
i )(1− 5u2

i ), (5.19)

1rostat.f, version 1.2, February 1991. Retrieved April 2012 from
http://www.pa.msu.edu/ftp/pub/beers/posts/rostat/rostat.f
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and ui is the biweight weighting

ui =
vi − v̄

9MAD(vi)
. (5.20)

Because it comes at no cost in computation or complexity, we argue that this

biweight sample variance is the biweight estimator that should always be used. It

is perhaps a bit of a pedantic point for those studies that have large numbers of

redshifts, but this statistical bias is certainly an effect that we wish to avoid in the

few-Nmembers regime.

5.2 The stacked cluster

We produce a stacked cluster from our observations, as a way to look at the ensem-

ble phase-space galaxy selection; this stacked cluster will also be useful for resampling

tests, Section 5.3. We generate it in a way that is independent of cluster membership

determination. As membership selection and the calculation of the velocity dispersion

are unavoidably intertwined, we use the SZ- and X-ray-based SPT mass, the other

uniform mass measurement that we have for all clusters, to normalize the velocities

before stacking. This eliminates any effect that interlopers or dispersion errors due

to sampling bias would have in the stacking.

We make a stacked proper-velocity distribution independent of any measurement

of the velocity dispersion by calculating the “equivalent dispersion” from the SPT

mass. We convert the M500c,SZ to M200c,SZ assuming an NFW profile and the Duffy

et al. (2008) concentration, and then convert the M200c,SZ to a σSZ (in km s−1) using

the Saro et al. (2012) scaling relation. This σSZ is listed for each cluster in Table
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6.2 for reference. We also normalize the distance to the SZ center by R200c,SZ. The

resulting phase-space diagram of the normalized proper velocities vi/σSZ vs ri/R200c,SZ

is shown in Figure 5.2. For reference, different velocity cuts are plotted. The black

dashed line is a 3-sigma cut. The red dot-dashed line is the “phase-space method”

(den Hartog & Katgert, 1996; Biviano et al., 2006; White et al., 2010) velocity cut,

where the mass as a function of radius is calculated from an NFW profile of typical

concentration instead of the dynamical mass; it is close to a 2σ cut. The blue dotted

line is a radially-dependent 2.7σ(R) cut, where again the σ(R) is from an NFW

profile; this velocity cut is found to be optimal for rejecting interlopers by Mamon

et al. (2010) (although when considering systems without red-sequence selection). All

of these cuts would be applied iteratively in membership selection.

The histogram of proper velocities is shown in the right panel, together with a

Gaussian of mean zero and standard deviation of one. This normal curve is the

expected distribution for randomly chosen cluster members, if σSZ is close to the true

velocity dispersion, on average. The similar shape and the low number of data points

with a large proper velocity is an encouraging sign of the success of the selection.

Figure 5.3 shows the stacked cluster using the proper velocities normalized by

the dispersion measured after 3σ membership selection, and the points and crosses

show the 3σ members and non-members, respectively. Interestingly, the phase-space

method cut seems to delineate the main envelope of the members quite well at pro-

jected radius & 0.4R200c, but not at smaller radius.
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Figure 5.2: Stacked cluster, using the dispersion equivalent to the SPT mass. Left
panel: phase-space diagram of velocities. The red dot-dashed line is “the phase-space
method” velocity cut, the blue dotted line is a radially-dependent 2.7σ(R) cut, and
the black dashed line is a 3-sigma cut. All of these cuts would be applied iteratively
in membership selection. Right panel: histogram of proper velocities, with a Gaussian
distribution with a mean of zero and standard deviation of one, and area equal to
that of the histogram.
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Figure 5.3: Stacked cluster, using the dispersion measured in each individual cluster.
Left panel: phase-space diagram of velocities. Non-members are shown as crosses,
passive galaxies as red dots, and emission-line galaxies as blue dots. The red dot-
dashed line is “the phase-space method” velocity cut, the blue dotted line is a radially-
dependent 2.7σ(R) cut, and the black dashed line is a 3-sigma cut. All of these cuts
would be applied iteratively in membership selection. Right panel: histogram of
proper velocities, with a Gaussian distribution with a mean of zero and standard
deviation of one, and area equal to that of the histogram. Red and blue are the
galaxies with continuum and emission-line redshifts, respectively.
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5.3 Statistical methodology

in the few-Nmembers regime

In this section, we explore the statistical issues surrounding our obtaining reliable

estimates of velocity dispersions and associated confidence intervals. Our results are

not new knowledge as the science of statistics is concerned, but we sort through a

few issues that are unclear or inconsistent in the velocity dispersion literature and

can become important in the few-Nmember regime, where, for instance, we need to be

attentive to the fact that N and (N − 1) differ by enough to perturb our results.

A key element in our approach is “resampling”, in which we extract and analyze

subsets of the data, either on a cluster-by-cluster basis, or from the stacked cluster

that we constructed from the entire catalog. This allows us to generate large num-

bers of “pseudo-observations” to address statistical questions where we have too few

observations to directly answer.

5.3.1 Generated subsamples

We generate sub-samples with different Nmembers by resampling from two different

source distributions.

First, we use the individual clusters for which we obtained 30 or more member

velocities as source distributions from which we randomly extract smaller samples,

as though we had observed fewer member galaxy redshifts. The cluster redshift and

dispersion from those smaller, random samples can be computed and compared to the

value that was measured with the full data set. This reference value is not the true
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dispersion of the halo and itself carries an uncertainty. Specifically, for each of the 17

clusters for which we obtained 30 or more member velocities, we randomly draw 500

“pseudo-observations” with 8 ≤ Nmembers ≤ 28. These subsamples are different but

not independent, which we take into account in our analysis.

Second, from the stacked cluster (with a velocity cut of 5σ), we resample a large

number of pseudo-observations with 8 ≤ Nmembers ≤ 30, on which we apply an itera-

tive 3σ membership selection cut.

Resampling from the individual clusters as opposed to the stack preserves possible

cluster substructure that would be statistically diluted in the stack, and also offers our

best membership selection. Resampling from the stack is the best way that we have

of generating different observations of a same cluster, which is the average cluster.

5.3.2 Unbiased estimators

Estimators and confidence intervals for velocity dispersions are discussed in Sec-

tion 5.1.4. As we are exploring the properties of the few-Nmembers regime, we would

like our estimators to be unbiased, in addition to being robust and resistant, meaning

that the mean estimate should be independent of the number of points that are sam-

pled. In other words, limiting observations to a small number of members per cluster

should not introduce biases, beyond yielding larger statistical uncertainties.

We discussed part of this issue already in Section, 5.1.4, when noting that the

expression for the biweight variance from Beers et al. (1990) is biased for samples,

and that the biweight sample variance, equation 5.18, is preferable, much like the

“regular”, Gaussian case where there are separate estimators that are the population
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variance and the sample variance.

But statistics are subtle and bias can come in different ways. The biweight sample

variance (like the regular sample variance) is an unbiased estimator of variance but

not of the dispersion (standard deviation). In other words, when sampling a Gaussian

distribution of variance σ2, the following expectations values hold:

E(σ2
BI) = σ2 but E(σBI) 6= σ. (5.21)

This statement is Nmembers-dependent, and for any reasonable Nmembers (such as more

than 15), effectively E(σBI) = σ. It is nonetheless for this reason that we calculate and

quote (in Table 6.2) confidence intervals from resampling that are symmetric around

σ2
BI, as this is the natural space of the estimator, where the resampled distribution is

closest to being symmetric at all Nmembers (see Section 5.3.3, and Figures 5.7 and 5.8).

The gapper scale estimator (Beers et al., 1990) is an unbiased estimator of dispersion

– not variance –, so we present confidence intervals on σG, not σ2
G.

The solid black line in Figures 5.4 and 5.5 is the average value of biweight estimates

as a function of Nmembers for our resampled pseudo-observations (we will discuss the

other lines, error and uncertainty, in Section 5.3.3). Figure 5.4 shows the biweight

average of the galaxy redshifts, normalized by the cosmological redshift of the cluster,

their “asymptotic value”, for the pseudo-observations resampled from the stacked

cluster, where a 3σ membership selection cut is applied to every subsample. The

average shows no dependence on Nmembers. Generating the same figure from the

pseudo-observations resampled from individual clusters looks nearly identical, which

shows that cluster substructure and membership selection have no adverse effect on

the determination of the cosmological redshift.
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Figure 5.5 shows the (normalized) biweight sample variance, this time for the

pseudo-observations resampled from the individual observed clusters2. The average

departs from unity at small Nmembers for some of the clusters where the value of the

dispersion can show a tendency to be high or low by a few percent, but on average

the line is very close to unity.

2Figure 5.6 is the equivalent figure from stacked-cluster resampling, which we will discuss when
talking about the effect of membership selection.
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Figure 5.4: Biweight average of the galaxy redshifts, normalized by the cosmological
redshift of the cluster, their “asymptotic value”, for the pseudo-observations resam-
pled from the stacked cluster, where a 3σ membership selection cut is applied to
every subsample. The solid black line is the average value, the dashed red line is
the average jackknife confidence interval, and the dot-dashed blue line is the sum of
the error from the asymptotic value plus the purely Gaussian resampling uncertainty
in the asymptotic value. The average is independent of Nmembers. Generating the
same figure from the pseudo-observations resampled from individual clusters looks
nearly identical, showing that cluster substructure and membership selection have no
adverse effect on the determination of the cosmological redshift.
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Figure 5.5: Biweight sample variance normalized by the asymptotic value (that is, the
measured value reported in Table 6.2), and averaged over an ensemble of resampled
clusters. There are 500 resampled clusters at each Nmembers for each of the 17 clusters
with 30 or more members. The solid black line is the average value, the dashed
red line is the average jackknife confidence interval, and the dot-dashed blue line is
the sum of the error from the asymptotic value plus the purely Gaussian resampling
uncertainty in the asymptotic value. The average departs from unity at low Nmembers

for some of the clusters where the value of the dispersion, in particular, can show a
tendency to be high or low by a few percent, but on average the line is very close to
unity.
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Figure 5.6: Biweight sample variance normalized by the asymptotic value, and av-
eraged over an ensemble of pseudo-observations resampled from the stacked cluster,
where a 3σ membership selection cut is applied to every subsample. The solid black
line is the average value, the dashed red line is the average jackknife confidence inter-
val, and the dot-dashed blue line is the sum of the error from the asymptotic value
plus the purely Gaussian resampling uncertainty in the asymptotic value.
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5.3.3 Confidence intervals

In addition to introducing biweight estimators, Beers et al. (1990) describe a

number of different ways in which the confidence intervals on biweight estimators can

be calculated; most notably, they give a good, short introduction to the statistical

jackknife and the statistical bootstrap.

The statistical jackknife (see, e.g. Mosteller & Tukey, 1977) constructs a confidence

interval for an estimate from how much it varies when data points are removed. The

“delete-1” jackknife algorithm, which we just call “statistical jackknife” for simplicity,

is the following. For an estimator f (e.g. a flavor of variance, σ2
BI(v)) and N data

points vi, generate N pseudovalues y?i = f(v(i)) where v(i) is the dataset with the ith

value removed. Then the confidence interval is

σf =
1

N(N − 1)

(∑
(y?i )

2 − 1

N
(
∑

y?i )
2

)
. (5.22)

The statistical bootstrap generates a probability distribution function for the esti-

mate from resampling the observed values with replacement a large number of times,

often 1000 or more. For instance, from 30 observed galaxy redshifts, one could gen-

erate the p.d.f. of the cosmological redshift and velocity dispersion by generating

1000 samples of 30 randomly chosen galaxy redshifts, where there are possibly dupli-

cate data points in each sample, and calculate the cosmological redshift and velocity

dispersion for each sample. The confidence intervals can then be found from the

percentiles of this distribution. This would seem like an intuitive procedure, but it

is not always so simple. Bootstrap distributions often exhibit bias; this bias is well

understood by statisticians who have developped prescriptions for correcting it (see,

e.g., Efron, 1987). This bias does not affect the biweight average, but in the case of
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the biweight dispersion, the median of the statistical bootstrap distribution is biased

with respect to the value of the estimate, which often leads to strongly asymmetric

confidence intervals, even with second-order (“BCa”) bias correction (Efron, 1987). It

was not immediately clear to us whether those confidence intervals are meaningfully

asymmetric, or whether the asymmetry is just an artifact left from incomplete bias

subtraction. It could be meaningful: because the dispersion cannot be negative (the

same is true of the variance), the distribution needs to be asymmetric to some extent.

Many publications following Beers et al. (1990) have chosen to calculate confidence

intervals with the statistical bootstrap, and different practices can be seen in its

use. When applied to the dispersion, Fadda et al. (1996) and Girardi et al. (1996)

for instance, quote asymmetric intervals where the upper interval is larger than the

lower interval, as in 1053+164
−108 km s−1. Others quote symmetric intervals from the

bootstrap (Zhang et al., 2011; Sifón et al., 2012), as in (1053 ± 139) km s−1, which

mathematically means that they ignore the actual value of the percentiles in the

bootsrap distribution, and only use its width symmetrically around their estimate.

This width is usually similar to the size of the confidence interval obtained from the

statistical jackknife, which is symmetric.

To complicate things further, if the confidence intervals are calculated symmet-

rically for σ2
BI instead of σBI, which makes intuitive sense given the fact explained

earlier that the variance, and not the dispersion, is the unbiased estimator, then con-

verting to a confidence interval on σBI creates an asymmetry where the lower interval

is larger than the upper interval, for instance 1053+108
−164 km s−1, which is the opposite

of what the bootstrap creates.
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We use resampling to determine which procedure is the best, that is, which one

produces confidence intervals that most accurately reflect the statistical variation in

the velocity dispersion measurement.

We use the samples drawn from the stacked cluster to explore the distribution

of the variance (σ2
BI). Figure 5.7 shows the histogram of 1000 σ2

BI measurements

with Nmembers = 30. The jackknife (red dashed), bootstrap (green dash-dotted) and

jackknife from the log variance (not shown3) all have a similar size to the RMS

error. The jackknife does not capture the slight asymmetry, while the bootstrap

overestimates the asymmetry.

We do the same calculations and plot for the logarithm of the variance (lnσ2
BI ∝

lnσBI), and the results are shown in Figure 5.8. It is a natural thing to look at,

because scaling relation calculations (and generally speaking, most plots) involve the

logarithm of the dispersion.

The distribution has a low tail and is not as symmetric as the distribution of the

variance, althought the estimate of symmetry is not so bad at the one-sigma level.

In view of this, we choose to quote confidence intervals in σ2
BI. We choose the

statistical jackknife; the statistical bootstrap appears to be performing similarly, but

it is computationally much more expensive.

We now wish to verify that the jackknife offers a good way to determine confidence

intervals down to few Nmembers. In Figures 5.4 and 5.5, the root-mean-square error of

the estimator from the asymptotic value is shown as a dash-dotted line. Because of

3As σ2 cannot be negative, Beers et al. (1990) suggest that the log variance is a better space to
calculate confidence intervals. We do not find that is is the case from the shape of the distribution,
but we note that all of our clusters are clearly very massive, so we are not in a regime of marginal
cluster detections with dispersion possibly consistent with zero.
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the large covariance of the subsample, the curve shown as the RMS error is actually

the measured RMS error between the subsamples and a symmetric the Nmembers = 30

uncertainty (from Figure 5.7), added in quadrature.

Then, for each of the subsamples, the uncertainty was computed using the statis-

tical jackknife. The average jackknife uncertainty is shown as a red dashed line. It

follows the RMS error well. In the case of the biweight sample variance, the jackknife

becomes less reliable for Nmembers ' 10− 12 and less.
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Figure 5.7: Distribution of 1000 measurements of the velocity variance (σ2
BI) with

Nmembers = 30 galaxy redshifts randomly sampled from the stacked cluster. This
distribution is more symmetric than the distribution of σBI, or lnσBI (Figure 5.8).
The values of σ2

BI are normalized by the variance of the velocities of the entire stacked
cluster. The solid line shows the mean which is very close to 1. The dotted line
shows the 68% confidence interval as computed from percentiles of the distribution.
The blue dashed line is the asymmetric root-mean-square error of the subsample
measurements. For each subsample, the jackknife and boostrap (with 1000 iterations)
confidence intervals were computed. Their average is shown as a red dashed line for
the jackknife, and an green dash-dotted line for the bootstrap.
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Figure 5.8: Distribution of 1000 measurements of the logarithm of the velocity vari-
ance (ln σ2

BI ∝ lnσBI) with Nmembers = 30 galaxy redshifts randomly sampled from the
stacked cluster. This distribution is to be compared with the distribution of σ2

BI (Fig-
ure 5.7). The values of σ2

BI are normalized by the log of the variance of the velocities
of the entire stacked cluster. The dotted line shows one sigma as calculated using the
standard deviation. The blue dashed line is the asymmetric root-mean-square error of
the subsample measurements. For each subsample, the jackknife and boostrap (with
1000 iterations) confidence intervals were computed. Their average is shown as a red
dashed line for the jackknife, and an green dash-dotted line for the bootstrap.
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5.3.4 Impact of membership selection

Membership selection has the potential of changing the average of our variance

measurements, as well as the shape of their distribution, and our estimates of the

confidence interval.

Figure 5.6 is similar to Figure 5.5, except that the samples were drawn from the

stacked cluster, and membership selection by 3σ clipping is applied before comput-

ing the variance for each Nmembers. The RMS error is visibly asymmetric and the

statistical jaccknife underestimates it. This is intuitively right as the sigma clipping

will only remove variability from the data, and therefore make estimates that rely on

variability in the data, like the jackknife or bootstrap, lower on average.

The mean is underestimated by a few percent when few members are used; the

size of this bias is of order 1% at Nmembers = 15 and 5% at Nmembers = 10.

AtNmembers = 25, which is both the median size of our samples and the point where

the statistical uncertainty equals 15%, the mean statistical (jackknife) uncertainty

for our sample, the combination of statistical plus systematic uncertainty due to

membership selection equals 19%. Adding the 12% intrinsic scatter in quadrature

yields a 22% floor for the measured scatter, before other systematics are taken into

account. This is a minimum, as the errors grow larger than the jackknife uncertainty

in the Nmembers = 15 ∼ 20 range.

In conclusion, the distribution of our measured velocity dispersions does not ex-

hibit a strong bias with varying Nmembers, and the uncertainties derived from the

statistical jackknife capture the statistical variance of the data well, but not system-

atic errors added by the membership selection. We cannot study those systematics
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further, given the small size of our sample of velocity dispersions. Ways to address

this and other systematics will be discussed in Chapter 7.
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Chapter 6

Data – optical spectroscopy

of 60 SPT clusters

In this chapter, we present the velocity data extracted from our spectroscopic

observations, as well as derivative products, most notably velocity dispersions. We

also present velocity dispersions from the literature, to produce a catalog of velocity

dispersions of SPT clusters.

The velocities of SPT cluster galaxies presented here include our spectroscopic

measurements of 60 massive galaxy clusters, 48 of which produce velocity dispersions

calculated with more than 15 member galaxies. We have already presented several

of these results elsewhere (Brodwin et al., 2010; Foley et al., 2011; Williamson et al.,

2011; McDonald et al., 2012; Stalder et al., 2013; Reichardt et al., 2013), where we

either reported the spectroscopic redshift, or were interested in the velocity disper-

sion of a single cluster. These are the data obtained through 2011 in our ongoing

spectroscopy program. We also list dispersions collected from the literature, most
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notably those presented by Sifón et al. (2012) who reported velocity dispersions of 16

massive clusters detected by ACT, 14 of which are also SPT detections.

6.1 Results

6.1.1 Individual galaxy redshifts

A subset of individual galaxy redshifts are listed in Table 6.1. The listed galaxies

are the central galaxies (see Section 6.1.3); the full sample of redshifts for both member

and non-member galaxies will be available in electronic format upon publication of

the results in a research journal. For each galaxy, the table lists the SPT ID of

the associated cluster, a galaxy ID, right ascension and declination, the redshift and

method of redshift measurement, and notable spectral features.

6.1.2 Cluster redshifts and velocity dispersions

Table 6.2 lists the cluster redshifts and velocity dispersions measured from the

galaxy velocities. The cluster redshift z is the biweight average of member galaxy

redshifts with an uncertainty derived from the statistical jackknife (see Section 5.3.3;

for the jackknife, see e.g. Mosteller & Tukey, 1977). Once the cluster redshift is

computed, the galaxy proper velocities vi are obtained from their redshifts zi by

vi = c(zi − z)/(1 + z), as explained in Section 5.1. The velocity dispersion σBI is the

square root of the biweight sample variance of proper velocities, the uncertainty of

which is also estimated via the statistical jackknife (see Section 5.3). We also report

the dispersion σG determined from the gapper estimator (Beers et al., 1990), which
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Chapter 6: Data – optical spectroscopy of 60 SPT clusters
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Chapter 6: Data – optical spectroscopy of 60 SPT clusters

is a preferred measurement for those clusters with fewer than 15 member redshifts.

The cluster redshifts and velocity dispersions are calculated using only galaxies

identified as members, where membership is established using iterative 3σ clipping

on the velocities (see Section 5.1.3). The center at each iteration of 3σ-clipping is

the robust biweight average, and σ is calculated from the robust biweight variance,

or the gapper estimator in the case where there are fewer than 15 members. We do

not make a hard velocity cut; the initial estimate of σ used in the iterative clipping

is determined from the galaxies located within 4000 km s−1 of the center (in the

rest frame), excluding any galaxy in the tails that lies more than 1000 km s−1 away

from any other galaxy. This initial step is similar in spirit to membership selection

algorithms based on gaps in the data, such as the shifting gapper (Fadda et al., 1996),

which is used by Sifón et al. (2012). Figure 6.1 shows the velocity histogram for each

cluster, as well as an indication of emission-line objects and our determination of

member and non-member galaxies.
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Figure 6.1: Histograms showing the proper velocities of galaxies selected as members
(red for passive galaxies, blue for emission-line galaxies), non-members (white) and
the central galaxy proper velocity (dotted line, see Section 6.1.3; not measured for
six of the clusters, mostly at high redshift).
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Some entries in Table 6.2 have a star-shaped flag ? in the SPT ID column, which

highlights possibly less reliable dispersion measurements. These are 7 clusters that

have fewer than 15 measured member redshifts1, as well as three others. In one case,

SPT-CL J0205-6432, Nmembers = 15, the gapper and biweight dispersions differ by

more than one sigma2, and in two cases, SPT-CL J2104-5224 with Nmembers = 23,

and SPT-CL J2341-5119 with Nmembers = 15, the jackknife confidence interval on

the biweight variance is very large and can be considered to have failed. We take the

statistical failures in these three cases as an indication that the sampling is inadequate.

6.1.3 Central galaxy peculiar velocities

For most of the clusters in this work, that is 49 clusters, we have a spectrum of the

central galaxy, which we visually select as a large, bright, typically cD-type galaxy

that is close to the SZ center and that appears to be central to the distribution of

galaxies; it often, but not always, coincides with the brightest cluster galaxy (BCG;

Skibba et al., 2011). Song et al. (2012), whose cluster sample overlaps with the one

presented here, select the brightest red galaxy within a projected radius of R200c,SZ,

which they call the rBCG. Table 6.3 lists coordinates, redshifts, and spatial offsets

(from the SZ center) of the objects identified as central galaxies. The cases in which

the choice of central galaxy differs from the Song et al. (2012) rBCG are indicated

by an asterisk (this difference arises from our criterion of centrality to the spatial

distribution of galaxies). In some cases, Song et al. (2012) chose not to designate a

1Once again, this is a somewhat arbitrary cutoff. See note at the end of Section 3.1

2Since these are not independent measurements but rather two estimates of the same quantity
from the same data, we consider a one-sigma discrepancy to be large.
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Table 6.2: Cluster redshifts and velocity dispersions
(This table is continued on next page.) This table shows the number N (≡ Nmembers)
of spectroscopic members as determined by iterative 3σ clipping, the aperture radius
a within which they were sampled in units of R200c,SZ, the robust biweight average
redshift z with the uncertainty in the last two digits in parentheses, the gapper
scale σG and the biweight dispersion σBI. All confidence intervals are from jackknife
resampling. The star flag ? in the SPT ID column indicates less reliable dispersion
measurements (see Section 6.1.2) σSZ is the equivalent dispersion from the SPT mass,
used in the construction of the stacked cluster. No uncertainty is given as it was not
used in our simple analysis.

SPT ID (and flag) N a z σSZ σG σBI

(R200c,SZ) (km s−1) (km s−1) (km s−1)

SPT-CL J0000-5748 26 1.0 0.7019(05) 937 598± 109 563+124
−161

SPT-CL J0014-4952 29 1.3 0.7520(08) 1024 812± 115 811+107
−124

SPT-CL J0037-5047 18 1.6 1.0262(08) 981 550± 97 555+96
−117

SPT-CL J0040-4407 36 0.4 0.3498(08) 1169 1275± 151 1277+140
−157

SPT-CL J0118-5156 ? 14 0.9 0.7050(27) 874 948± 186 986+203
−257

SPT-CL J0205-5829 9 1.3 1.3219(07) 1104 - -

SPT-CL J0205-6432 ? 15 1.1 0.7436(04) 871 687± 204 340+219
−340

SPT-CL J0233-5819 ? 10 0.9 0.6635(15) 891 783± 183 800+165
−210

SPT-CL J0234-5831 22 0.3 0.4149(07) 1079 929± 160 926+157
−190

SPT-CL J0240-5946 25 0.4 0.4004(10) 950 999± 150 1014+147
−172

SPT-CL J0245-5302 29 0.4 0.3003(09) 1130 1128± 157 1131+143
−163

SPT-CL J0254-5857 35 0.4 0.4371(14) 1079 1431± 190 1483+212
−248

SPT-CL J0257-5732 22 0.6 0.4337(08) 806 1039± 189 1024+176
−213

SPT-CL J0317-5935 17 0.5 0.4691(04) 839 473± 95 473+86
−105

SPT-CL J0433-5630 22 0.7 0.6922(13) 824 1084± 172 1090+158
−185

SPT-CL J0438-5419 18 0.5 0.4223(11) 1196 1428± 265 1422+237
−286

SPT-CL J0449-4901 20 0.7 0.7898(20) 987 1067± 167 1090+147
−170

SPT-CL J0509-5342 21 0.8 0.4616(07) 963 670± 98 678+73
−82

SPT-CL J0511-5154 15 0.9 0.6447(12) 881 778± 138 791+119
−141

SPT-CL J0516-5430 48 0.4 0.2940(05) 1000 721± 76 724+73
−82

SPT-CL J0528-5300 20 1.2 0.7693(14) 859 1179± 235 1181+237
−299

SPT-CL J0533-5005 4 0.4 0.8813(04) 834 - -
SPT-CL J0534-5937 3 0.4 0.5757(04) 797 - -

SPT-CL J0546-5345 21 0.8 1.0661(17) 1083 1162± 193 1191+202
−244

SPT-CL J0551-5709 34 0.6 0.4243(07) 853 962± 128 966+125
−144

SPT-CL J0559-5249 37 0.8 0.6092(08) 1072 1135± 139 1146+144
−164
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Table 6.2: Cluster redshifts and velocity dispersions (continued)

SPT ID (and flag) N a z σSZ σG σBI

(R200c,SZ) (km s−1) (km s−1) (km s−1)

SPT-CL J2022-6323 37 0.4 0.3832(07) 852 1076± 103 1080+92
−100

SPT-CL J2032-5627 31 0.3 0.2841(05) 900 771± 94 777+84
−94

SPT-CL J2040-5725 5 0.9 0.9295(32) 894 - -

SPT-CL J2043-5035 21 1.1 0.7234(06) 975 509± 71 524+72
−83

SPT-CL J2056-5459 ? 12 0.7 0.7185(10) 851 704± 206 642+233
−401

SPT-CL J2058-5608 9 0.9 0.6065(08) 787 - -

SPT-CL J2100-4548 19 1.4 0.7124(09) 814 731± 102 733+89
−101

SPT-CL J2104-5224 ? 23 1.5 0.7990(15) 858 1176± 211 1153+515
−1153

SPT-CL J2106-5844 18 1.0 1.1312(18) 1288 1216± 218 1228+210
−254

SPT-CL J2118-5055 25 1.2 0.6249(09) 864 981± 156 982+149
−176

SPT-CL J2124-6124 24 0.6 0.4354(10) 918 1151± 149 1153+133
−151

SPT-CL J2130-6458 47 0.5 0.3164(05) 887 897± 97 903+94
−105

SPT-CL J2135-5726 33 0.4 0.4269(08) 980 1020± 151 1029+163
−194

SPT-CL J2136-4704 24 0.6 0.4247(12) 875 1461± 227 1461+202
−234

SPT-CL J2136-6307 ? 10 0.8 0.9258(23) 889 1244± 301 1269+273
−351

SPT-CL J2138-6007 34 0.3 0.3185(09) 1017 1269± 141 1303+132
−147

SPT-CL J2145-5644 37 0.5 0.4798(13) 1029 1634± 189 1638+170
−190

SPT-CL J2146-4633 17 1.0 0.9309(23) 1061 1558± 284 1576+250
−298

SPT-CL J2146-4846 26 0.9 0.6230(07) 877 772± 111 784+104
−121

SPT-CL J2148-6116 30 0.6 0.5707(11) 899 969± 139 966+130
−150

SPT-CL J2155-6048 25 0.8 0.5393(11) 798 1157± 152 1162+142
−162

SPT-CL J2248-4431 15 0.2 0.3512(14) 1399 1304± 306 1301+291
−379

SPT-CL J2300-5331 24 0.3 0.2623(07) 824 887± 139 920+121
−139

SPT-CL J2301-5546 ? 11 0.7 0.7479(22) 856 1242± 375 1261+414
−648

SPT-CL J2325-4111 33 0.6 0.3579(13) 1051 1926± 273 1921+255
−294

SPT-CL J2331-5051 78 0.9 0.5748(06) 970 1363± 119 1382+132
−146

SPT-CL J2332-5358 53 0.6 0.4020(08) 1018 1253± 146 1240+145
−164

SPT-CL J2337-5942 19 0.9 0.7764(09) 1188 700± 99 707+95
−110

SPT-CL J2341-5119 ? 15 1.1 1.0025(10) 1091 1111± 289 959+422
−959

SPT-CL J2342-5411 ? 11 1.5 1.0746(24) 893 1278± 338 1268+289
−379

SPT-CL J2344-4243 32 0.7 0.5952(16) 1313 1824± 231 1878+236
−271

SPT-CL J2347-5158 ? 12 0.9 0.8693(07) 786 630± 162 635+159
−215

SPT-CL J2355-5056 37 0.5 0.3200(07) 858 1124± 162 1104+149
−173

SPT-CL J2359-5009 26 0.9 0.7747(09) 892 951± 135 950+123
−141
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rBCG due to the presence of bright foreground objects masking part of the cluster,

and these are indicated with two asterisks. The results in this section would not

change in any significant way if we were to adopt the Song et al. (2012) rBCGs as

the central galaxies, which in effect would mean reducing our sample to a subsample.

We calculate the proper velocities of the central galaxies with respect to the cluster

average; the uncertainty in that measurement is the quadrature sum of the uncertainty

in the cluster velocity (from the cosmological redshift) and in the galaxy velocity. This

proper velocity is then compared to the cluster’s velocity dispersion σBI. Figure 6.2

shows a normalized histogram (in blue diagonal lines) of the vp/σBI ratio for the

central galaxies of the 41 clusters for which the dispersion is calculated from more

than 15 members. This distribution is centered around zero (average of 0.04± 0.10),

as expected.

The observed distribution looks like a continuous peaked distribution, with the

exception of perhaps an outlier. The large proper velocities of any outliers could

be due to a mis-identification of the central galaxy or poor sampling of the cluster

potential by the selected galaxies, or could indicate that the cluster is in a disrupted

dynamical state. After inspection of the data in hand, it is not clear which of these

explanations account for the offset in the case of our most significant deviation from

zero, SPT-CL J2022-6323 (the point seen on the far left of the histogram in Figure

6.2).

In the limiting case where the central galaxy always has a proper velocity of exactly

zero kilometers per second, this distribution would still have a nonzero width because

of the large proper velocity errors. This zero-velocity distribution is over-plotted as a
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dashed line in Figure 6.2 for reference. It was generated by sampling randomly from

Gaussians of mean zero and standard deviation given by the uncertainties in vp/σBI. A

KS test shows that the distribution of central galaxy velocities is significantly different

from this zero-velocity distribution: the KS-test p-value for the null hypothesis of the

two distributions being drawn from the same parent distribution is 0.005, whether

the possible outlier is included or not. It has been found at low redshift that many

BCGs have a proper velocity significantly different from zero; for example, Coziol

et al. (2009) found that the BCGs of a sample of 452 Abell clusters have a median

peculiar velocity that is 32% of their clusters’ radial velocity dispersion. Including

a correction for our large uncertainties, we measure this median to be 28+5
−9% in our

smaller SZ-selected sample, which is consistent with their measurement.

It is expected that the most massive cluster galaxy will gradually come to rest at

the center of the potential through dynamical friction, so that this distribution should

be narrow. Our observed distribution is narrower than that of all member galaxies

(white histogram on Figure 6.2). The KS-test p-value for the two distributions being

drawn from the same parent distribution is 0.18 for all central galaxies, and 0.10 when

the most significant deviation is excluded; in other words, the distributions are only

measured to be different with a low statistical significance by that metric.

One of the motivations for looking at the central-galaxy peculiar velocities and

spatial offsets from the SZ center was to use them as an indicator of a disturbed dy-

namical state. Sifón et al. (2012), with a smaller sample of 16 clusters, use the central

galaxy proper velocity and spatial offset as two of three criteria to flag “disturbed”

clusters, but do not find that they are different from the clusters flagged as “relaxed”
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in the comparison of the dynamical mass and SZ properties. Spatial offsets of SPT

cluster rBCGs are discussed in Song et al. (2012), where they are shown to be consis-

tent with the spatial offsets with respect to the X-ray peak in X-ray-selected clusters,

when the BCG identification is similar (see, e.g., Lin & Mohr, 2004). Haarsma et al.

(2010) find in an X-ray-selected sample that except possibly for a handful of very dis-

turbed systems, correlation between spatial BCG offsets and dynamical state of the

gas is difficult to quantify. From a velocity offset perspective, our results suggest that

it will not be possible to divide SPT clusters along binary dynamical classes using

peculiar velocities, since these are consistent with being normally distributed, per the

Anderson-Darling test. Also, the velocity and spatial offsets are not correlated and

plotting one against the another does not reveal new outliers or new structure.

121



Chapter 6: Data – optical spectroscopy of 60 SPT clusters

T
ab

le
6.

3:
D

y
n
am

ic
al

p
ro

p
er

ti
es

of
ce

n
tr

al
ga

la
x
ie

s
(T

hi
s

ta
bl

e
is

co
n

ti
n

u
ed

on
n

ex
t

pa
ge

.)
C

o
or

d
in

at
es

,
p

ec
u
li
ar

ve
lo

ci
ty

v p
,

ra
ti

o
v p
/σ

of
p

ec
u
li
ar

ve
lo

ci
ty

to
ve

lo
ci

ty
d
is

p
er

si
on

,
an

d
sp

at
ia

l
off

se
ts

of
ce

n
tr

al
ga

la
x
ie

s
(t

h
e

ce
n
tr

al
ga

la
x
y

se
le

ct
io

n
is

ex
p
la

in
ed

in
S
ec

ti
on

6.
1.

3)
.

T
h
e

p
ec

u
li
ar

ve
lo

ci
ty

is
th

e
re

st
-f

ra
m

e
ve

lo
ci

ty
w

it
h

th
e

re
st

fr
am

e
d
efi

n
ed

b
y

th
e

av
er

ag
e

re
d
sh

if
t

of
th

e
cl

u
st

er
ve

lo
ci

ti
es

,
an

d
th

e
u
n
ce

rt
ai

n
ty

p
re

se
n
te

d
h
er

e
in

cl
u
d
es

th
e

u
n
ce

rt
ai

n
ti

es
on

b
ot

h
th

e
ga

la
x
y

re
d
sh

if
t

an
d

th
e

cl
u
st

er
re

d
sh

if
t.

T
h
e

off
se

ts
∆
r

ar
e

m
ea

su
re

d
w

it
h

re
sp

ec
t

to
th

e
S
Z

ce
n
te

r.
*

in
d
ic

at
es

th
at

th
e

ch
oi

ce
of

ce
n
tr

al
ga

la
x
y

d
iff

er
s

fr
om

S
on

g
et

al
.

(2
01

2)
,

an
d

**
ar

e
th

e
ca

se
s

w
h
er

e
S
on

g
et

al
.

(2
01

2)
ch

os
e

n
ot

to
se

le
ct

a
rB

C
G

d
u
e

to
th

e
p
re

se
n
ce

of
b
ri

gh
t

fo
re

gr
ou

n
d

ob
je

ct
s

m
as

k
in

g
p
ar

t
of

th
e

cl
u
st

er
.

T
h
e
v p
/σ

in
p
ar

en
th

es
es

ar
e

m
or

e
p
re

ci
se

ly
v p
/σ

G
an

d
ar

e
n
ot

u
se

d
in

F
ig

u
re

6.
2

b
ec

au
se

th
e

d
is

p
er

si
on

w
as

m
ea

su
re

d
w

it
h

to
o

fe
w

ga
la

x
y

re
d
sh

if
ts

;
th

e
ot

h
er

va
lu

es
u
se

th
e

b
iw

ei
gh

t
ve

lo
ci

ty
d
is

p
er

si
on

.

S
P

T
ID

C
en

tr
a
l

g
a
l.

R
.A

.
C

en
tr

a
l

g
a
l.

D
ec

.
v
p

v
p
/
σ

∆
r a

n
g

∆
r p

h
y
s

(J
2
0
0
0

d
eg

.)
(J

2
0
0
0

d
eg

.)
(k

m
s−

1
)

(a
rc

se
c)

(k
p

c)

S
P

T
-C

L
J
0
0
0
0
-5

7
4
8

0
.2

5
0
2

−
5
7
.8

0
9
3
−

2
1
9
±

1
1
5

−
0
.3

9
±

0
.3

4
2
5
±

4
1
7
8
±

2
8

S
P

T
-C

L
J
0
0
3
7
-5

0
4
7

9
.4

4
7
1

−
5
0
.7

8
8
6

5
8
2
±

1
2
7

1
.0

5
±

0
.6

8
2
8
±

2
2
2
6
±

1
8

S
P

T
-C

L
J
0
1
1
8
-5

1
5
6

1
9
.6

0
3
2

−
5
1
.9

4
1
3
−

5
0
5
±

5
0
1

(−
0
.5

3
±

0
.6

3
)

2
3
±

3
1
6
6
±

1
9

S
P

T
-C

L
J
0
2
0
5
-5

8
2
9

3
1
.4

5
1
1

−
5
8
.4

8
0
1

−
1
6
±

1
1
5

(−
0
.0

3
±

0
.1

9
)

2
4
±

1
2
0
6
±

1
2

S
P

T
-C

L
J
0
2
0
5
-6

4
3
2
*

3
1
.2

8
2
9

−
6
4
.5

4
0
9

−
1
1
4
±

7
7

(−
0
.1

7
±

0
.1

7
)

2
0
±

5
1
4
7
±

3
7

S
P

T
-C

L
J
0
2
3
3
-5

8
1
9

3
8
.2

5
3
7

−
5
8
.3

2
7
0
−

6
3
1
±

2
7
1

(−
0
.8

1
±

0
.6

5
)

5
±

1
1

3
3
±

8
0

S
P

T
-C

L
J
0
2
3
4
-5

8
3
1

3
8
.6

7
6
1

−
5
8
.5

2
3
6

−
7
7
±

1
6
2

−
0
.0

8
±

0
.1

8
9
±

2
4
8
±

1
1

S
P

T
-C

L
J
0
2
4
0
-5

9
4
6

4
0
.1

6
0
0

−
5
9
.7

6
3
5

5
0
7
±

2
2
4

0
.5

0
±

0
.3

6
2
5
±

5
1
3
5
±

2
7

S
P

T
-C

L
J
0
2
4
5
-5

3
0
2

4
1
.3

5
3
4

−
5
3
.0

2
9
3

5
6
7
±

2
0
1

0
.5

0
±

0
.3

1
5
8
±

3
2
6
1
±

1
4

S
P

T
-C

L
J
0
2
5
4
-5

8
5
7
*

4
3
.5

6
4
5

−
5
8
.9

5
3
0

4
0
±

3
0
1

0
.0

3
±

0
.2

0
1
6
±

6
9
0
±

3
6

S
P

T
-C

L
J
0
2
5
7
-5

7
3
2

4
4
.3

3
7
2

−
5
7
.5

4
8
3
−

1
6
3
±

1
7
0

−
0
.1

6
±

0
.1

9
3
5
±

3
2
0
0
±

1
6

S
P

T
-C

L
J
0
3
1
7
-5

9
3
5

4
9
.3

1
5
8

−
5
9
.5

9
1
5
−

3
0
4
±

1
0
0

−
0
.6

4
±

0
.4

6
2
3
±

3
1
3
6
±

1
5

S
P

T
-C

L
J
0
4
3
3
-5

6
3
0

6
8
.2

5
4
1

−
5
6
.5

1
9
4

4
3
0
±

2
3
4

0
.3

9
±

0
.3

1
5
6
±

2
0

4
0
3
±

1
4
1

S
P

T
-C

L
J
0
4
3
8
-5

4
1
9

6
9
.5

7
3
4

−
5
4
.3

2
2
4
−

1
2
2
±

2
5
0

−
0
.0

9
±

0
.1

8
1
7
±

1
9
4
±

8
S

P
T

-C
L

J
0
4
4
9
-4

9
0
1

7
2
.2

6
6
8

−
4
9
.0

2
7
5

8
4
9
±

3
3
7

0
.7

8
±

0
.5

2
3
2
±

5
2
4
3
±

3
9

S
P

T
-C

L
J
0
5
0
9
-5

3
4
2

7
7
.3

3
9
3

−
5
3
.7

0
3
6

−
9
±

1
6
0

−
0
.0

1
±

0
.2

4
8
±

5
4
5
±

2
7

S
P

T
-C

L
J
0
5
1
1
-5

1
5
4
*
*

7
7
.9

2
8
8

−
5
1
.9

1
0
2

7
3
2
±

2
3
8

0
.9

3
±

0
.6

1
2
8
±

5
1
9
7
±

3
7

S
P

T
-C

L
J
0
5
1
6
-5

4
3
0

7
9
.1

5
5
7

−
5
4
.5

0
0
4

7
0
1
±

1
5
2

0
.9

7
±

0
.4

9
2
6
±

5
1
1
6
±

2
1

S
P

T
-C

L
J
0
5
2
8
-5

3
0
0

8
2
.0

2
2
1

−
5
2
.9

9
8
2
−

3
9
4
±

2
4
3

−
0
.3

3
±

0
.3

0
1
2
±

3
9
3
±

2
1

S
P

T
-C

L
J
0
5
5
1
-5

7
0
9

8
7
.8

9
8
3

−
5
7
.1

4
1
2

1
0
±

1
5
5

0
.0

1
±

0
.1

6
5
5
±

1
0

3
1
0
±

5
5

S
P

T
-C

L
J
0
5
5
9
-5

2
4
9

8
9
.9

3
0
1

−
5
2
.8

2
4
1

2
2
5
±

1
6
8

0
.2

0
±

0
.1

8
1
5
±

6
1
0
0
±

4
4

122



Chapter 6: Data – optical spectroscopy of 60 SPT clusters

T
ab

le
6.

3:
D

y
n
am

ic
al

p
ro

p
er

ti
es

of
ce

n
tr

al
ga

la
x
ie

s
(c

on
ti

n
u
ed

)

S
P

T
ID

C
en

tr
a
l

g
a
l.

R
.A

.
C

en
tr

a
l

g
a
l.

D
ec

.
v
p

v
p
/
σ

∆
r a

n
g

∆
r p

h
y
s

(J
2
0
0
0

d
eg

.)
(J

2
0
0
0

d
eg

.)
(k

m
s−

1
)

(a
rc

se
c)

(k
p

c)

S
P

T
-C

L
J
2
0
2
2
-6

3
2
3

3
0
5
.5

4
1
1

−
6
3
.3

9
7
1
−

2
0
9
2
±

1
7
3

−
1
.9

4
±

0
.8

3
2
8
±

5
1
4
9
±

2
4

S
P

T
-C

L
J
2
0
3
2
-5

6
2
7

3
0
8
.0

5
8
6

−
5
6
.4

3
6
8

8
8
±

1
4
7

0
.1

1
±

0
.2

0
8
0
±

1
3

3
4
5
±

5
6

S
P

T
-C

L
J
2
0
4
3
-5

0
3
5
*
*

3
1
0
.8

2
3
3

−
5
0
.5

9
2
4

−
1
5
9
±

2
0
3

−
0
.3

0
±

0
.4

2
1
2
±

4
8
8
±

2
8

S
P

T
-C

L
J
2
0
5
6
-5

4
5
9

3
1
4
.2

2
3
1

−
5
4
.9

8
5
9

−
5
8
6
±

1
7
6

(−
0
.8

3
±

0
.6

9
)

1
4
±

2
9
9
±

1
8

S
P

T
-C

L
J
2
0
5
8
-5

6
0
8

3
1
4
.5

9
2
7

−
5
6
.1

4
6
4

−
7
1
±

1
6
0

(−
0
.0

7
±

0
.1

7
)

8
±

3
5
3
±

2
0

S
P

T
-C

L
J
2
1
0
0
-4

5
4
8
*
*

3
1
5
.0

9
9
6

−
4
5
.8

0
9
6

4
2
2
±

1
6
4

0
.5

8
±

0
.3

7
2
1
±

6
1
4
9
±

4
5

S
P

T
-C

L
J
2
1
1
8
-5

0
5
5
*
*

3
1
9
.7

2
1
8

−
5
0
.9

3
3
3

7
3
±

1
7
8

0
.0

7
±

0
.1

9
1
7
±

3
1
1
4
±

1
8

S
P

T
-C

L
J
2
1
2
4
-6

1
2
4

3
2
1
.1

5
7
6

−
6
1
.4

0
7
6

4
4
0
±

2
0
9

0
.3

8
±

0
.2

6
2
8
±

7
1
5
7
±

4
2

S
P

T
-C

L
J
2
1
3
0
-6

4
5
8

3
2
2
.7

3
4
4

−
6
4
.9

7
7
9

−
7
9
±

1
3
8

−
0
.0

9
±

0
.1

6
1
1
±

8
4
9
±

3
7

S
P

T
-C

L
J
2
1
3
5
-5

7
2
6

3
2
3
.9

0
5
9

−
5
7
.4

4
1
8

7
7
2
±

1
8
1

0
.7

5
±

0
.4

7
1
9
±

3
1
0
8
±

1
6

S
P

T
-C

L
J
2
1
3
6
-6

3
0
7

3
2
4
.2

2
3
5

−
6
3
.1

1
4
3

−
5
2
6
±

3
5
7

(−
0
.4

2
±

0
.4

1
)

3
6
±

7
2
8
7
±

5
7

S
P

T
-C

L
J
2
1
3
8
-6

0
0
7

3
2
4
.5

0
3
4

−
6
0
.1

3
1
6

6
0
5
±

2
2
8

0
.4

6
±

0
.2

8
5
±

4
2
5
±

1
7

S
P

T
-C

L
J
2
1
4
5
-5

6
4
4
*

3
2
6
.4

6
6
5

−
5
6
.7

4
8
2

3
0
3
±

2
9
9

0
.1

8
±

0
.2

0
6
±

2
3
7
±

1
5

S
P

T
-C

L
J
2
1
4
6
-4

6
3
3
*
*

3
2
6
.6

4
7
4

−
4
6
.5

5
0
4

−
4
2
4
±

3
6
8

−
0
.2

7
±

0
.2

8
1
±

3
4
±

2
5

S
P

T
-C

L
J
2
1
4
6
-4

8
4
6

3
2
6
.5

2
4
7

−
4
8
.7

8
1
5

−
9
6
9
±

1
3
2

−
1
.2

4
±

0
.6

8
2
8
±

1
5

1
9
0
±

1
0
5

S
P

T
-C

L
J
2
1
4
8
-6

1
1
6

3
2
7
.1

6
1
7

−
6
1
.2

6
5
5
−

1
1
1
8
±

2
2
0

−
1
.1

6
±

0
.6

6
5
8
±

1
0

3
8
2
±

6
8

S
P

T
-C

L
J
2
1
5
5
-6

0
4
8

3
2
8
.9

8
1
2

−
6
0
.8

1
7
5

5
0
5
±

2
0
9

0
.4

3
±

0
.2

9
3
8
±

1
1

2
4
3
±

7
3

S
P

T
-C

L
J
2
2
4
8
-4

4
3
1

3
4
2
.1

8
3
3

−
4
4
.5

3
0
8

−
6
5
9
±

3
1
3

−
0
.5

1
±

0
.4

3
1
5
±

1
7
4
±

5
S

P
T

-C
L

J
2
3
0
0
-5

3
3
1

3
4
5
.1

6
5
5

−
5
3
.5

2
0
0

1
7
7
±

2
0
0

0
.1

9
±

0
.2

4
2
6
±

3
1
0
5
±

1
2

S
P

T
-C

L
J
2
3
2
5
-4

1
1
1

3
5
1
.2

9
8
8

−
4
1
.2

0
3
8

9
9
4
±

3
1
3

0
.5

2
±

0
.3

2
3
6
±

7
1
8
3
±

3
7

S
P

T
-C

L
J
2
3
3
1
-5

0
5
1

3
5
2
.9

6
3
1

−
5
0
.8

6
5
0

7
2
7
±

1
3
8

0
.5

3
±

0
.2

6
1
1
±

2
7
5
±

1
2

S
P

T
-C

L
J
2
3
3
2
-5

3
5
8

3
5
3
.1

1
4
6

−
5
3
.9

7
4
5

4
5
3
±

1
7
7

0
.3

7
±

0
.2

3
2
3
±

1
2

1
2
3
±

6
7

S
P

T
-C

L
J
2
3
3
7
-5

9
4
2

3
5
4
.3

6
5
1

−
5
9
.7

0
1
3

4
1
0
±

1
6
5

0
.5

8
±

0
.3

9
2
4
±

1
1
8
0
±

8
S

P
T

-C
L

J
2
3
4
1
-5

1
1
9

3
5
5
.3

0
1
5

−
5
1
.3

2
9
1

3
7
5
±

2
0
8

(0
.3

4
±

0
.3

1
)

1
4
±

5
1
1
6
±

3
8

S
P

T
-C

L
J
2
3
4
2
-5

4
1
1

3
5
5
.6

9
1
3

−
5
4
.1

8
4
8

8
9
7
±

3
5
8

(0
.7

0
±

0
.5

8
)

1
4
±

5
1
1
7
±

4
0

S
P

T
-C

L
J
2
3
4
4
-4

2
4
3

3
5
6
.1

8
2
9

−
4
2
.7

2
0
0

5
4
4
±

4
4
1

0
.2

9
±

0
.2

8
1
1
±

1
7
3
±

7
S

P
T

-C
L

J
2
3
5
5
-5

0
5
6

3
5
8
.9

4
7
7

−
5
0
.9

2
7
9

−
3
6
3
±

1
8
1

−
0
.3

3
±

0
.2

4
3
6
±

8
1
6
6
±

3
6

S
P

T
-C

L
J
2
3
5
9
-5

0
0
9

3
5
9
.9

2
8
6

−
5
0
.1

6
7
2

−
6
3
2
±

1
8
5

−
0
.6

7
±

0
.4

0
3
2
±

1
2

2
3
7
±

8
9

123



Chapter 6: Data – optical spectroscopy of 60 SPT clusters

−3 −2 −1 0 1 2 3
vp /σBI

R
e
la

ti
v
e
 f

re
q
u
e
n
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41 central galaxies

all member galaxies

vp  0 km s−1

Figure 6.2: Ratio of galaxy proper velocity to cluster velocity dispersion, shown as
a normalized histogram both for the central galaxies with well-measured dispersions
(blue, hatched) and all member galaxies (white). In the limit where the central galaxy
always has a proper velocity of 0 km s−1, the distribution would retain a certain width
because of the large errors, and the expected shape of this zero-velocity distribution
is overplotted as a dashed line for reference.

6.1.4 Data in the literature: summary and comparison

Table 6.4 contains spectroscopic redshifts and velocity dispersions from the lit-

erature for clusters detected by SPT, most notably from Sifón et al. (2012). We

independently obtained data for five of these clusters; all of the reported cluster red-

shifts and dispersions are consistent, and the RMS residuals agree with the size of

our uncertainties. This comparison is of particular interest in judging our follow-up

124



Chapter 6: Data – optical spectroscopy of 60 SPT clusters

strategy, because the typical number of SPT-reported member galaxies per dispersion

is 25 (for Nmembers ≥ 15), while for the overlapping Sifón et al. (2012) sample it is 55.

We have not had an opportunity to evaluate the extent of overlap between the

selected galaxies, which would make the errors correlated, as the data from Sifón

et al. (2012) are not available to us at the time of writing. We do know, from that

article, that their 48 members for SPT-CL J0546-5345 include our 21 redshifts that

were published in Brodwin et al. (2010), and that the redshifts measured in common

agree within two sigma.

6.2 Comparison of velocity dispersions with other

observables

In this section, we plot the data and make simple fits in an exploratory manner to

see how they compare with expectations. Using these fits and comparisons to precisely

inform the SZ mass calibration and cosmology will require a different study, where

the SZ selection is taken into account and the systematics of our velocity dispersion

measurements are fully characterized.

6.2.1 Comparison with SZ-based masses

Figure 6.3 shows the cluster biweight velocity dispersions, from Tables 6.2 and

6.4, plotted against the masses derived from their SPT SZ signal (combined with

X-ray observations where applicable; Table 3.1, Section 3.2). The clusters that are

included are those with Nmembers ≥ 15 and z ≥ 0.3, except for the three flagged for
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statistical indications of unreliable dispersions in Table 6.2. The scaling relationship

between velocity dispersion and mass from Saro et al. (2012) (see Section 1.3.1) based

on N-body simulations is over-plotted as a solid line.
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Figure 6.3: Cluster biweight velocity dispersions from Tables 6.2 and 6.4 as a function
of SPT SZ-based masses (Table 3.1, Section 3.2) for clusters with Nmembers ≥ 15 and
z ≥ 0.3. The figure also shows the scaling relationship predicted from numerical
models as a solid line (Saro et al., 2012).
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The velocity dispersions appear to have a systematic offset from the model pre-

diction; although we frame the following in terms of the velocity dispersion nor-

malization, we note that any offset would be a relative one, and could be due to a

combination of systematics in the measurement of the dispersion and of M500c,SZ. We

carry out a simple fit where we fix the slope of the dispersion-M200c,SZ relationship3 to

that of the Saro et al. (2012) scaling relation, 0.343, and fit for the overall normaliza-

tion. The resulting velocity dispersion normalization, shown by the dashed blue line,

is (10± 4)% higher than the simulated relation. The size of this normalization offset

is consistent with the expected size of systematic biases, discussed in Chapter 7, in

particular with the bias expected from the mock observations of simulated clusters

from Saro et al. (2012).

The measured scatter in lnσ at fixed mass is (28 ± 3)%. According to the

Anderson-Darling test, the residuals are significantly non-Gaussian at a 97.5% con-

fidence level, but this significance diminishes gradually and ultimately falls below

85% confidence when the calculation is repeated with the one, then two, then three

points with the lowest dispersions are excluded (respectively SPT-CL J0317-5935,

SPT-CL J2043-5035, and SPT-CL J0037-5047), which suggests normal scatter in lnσ

– or log-normal in dispersion –, with a heavy low tail. Sources of scatter relating to

the velocity dispersion contributing to the measured scatter are the intrinsic scatter

of the dispersion – mass relation (12%), the statistical errors on the dispersion mea-

surements (the mean statistical uncertainty in dispersion is 15%), and extra scatter

from systematic effects. Those systematic effects can be related to the membership

3Figure 6.3 shows M500c,SZ, but the scaling relation from N-body simulations exists for M200c.
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selection, spatial sampling of the cluster, to the sampling of its luminosity function,

and to the effect of interlopers; see the discussion in Section 7. Analysis of mock

observations from simulated clusters indicate that the combined measurement scatter

(intrinsic, statistical, and systematic) is 26% (Saro et al., 2012), in good agreement

with the level of the scatter observed here. The resampling exploration of the 3σ

clipping membership selection presented in Section 5.3 implies a scatter floor around

22% to which other systematic effects are added.

The errors in M500c,SZ will also contribute to the observed scatter. The mean

uncertainty in M500c,SZ, which includes the effect of intrinsic scatter, is 21%, which

translates to 7% in dispersion, a small contribution when added in quadrature with

the other sources just discussed.

6.2.2 Comparison with X-ray observations

Turning to X-ray data gives us the opportunity to compare the velocity dispersions

and X-ray properties of SPT clusters with existing data on comparable systems, albeit

at lower redshift. We use X-ray observations from the SPT Chandra X-ray Visionary

Project (PI: B. Benson) which is observing the 80 most massive SPT-selected clusters

with Chandra. This mass-limited sample has been observed and reduced in a uniform

fashion, as outlined in Benson et al. (2013; integrated quantities) and McDonald et

al. (2013; X-ray profiles). Slight deviations from previously-published values for some

clusters (Andersson et al., 2011) in the characteristic ICM temperature, TX , and YX-

derived mass, M500c,YX , are due to improvements in the X-ray reduction and analysis

pipeline (e.g., centroiding, substructure masking, Galactic/extragalactic background
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modeling, updated calibration, etc).

From the literature, we take the X-ray temperatures and M500c,YX
, of the low-z

sample of Vikhlinin et al. (2009a), as these data were reduced and analyzed using

the same pipeline. The velocity dispersions for many of those galaxy clusters were

calculated in a uniform way in Girardi et al. (1996). These velocity dispersion mea-

surements were made with a different galaxy selection and more cluster members,

and so will carry different systematics from our own.
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Figure 6.4: Velocity dispersion compared to X-ray properties. The blue points are
our sample, and the black crosses are the data from the literature, with X-ray data
from Vikhlinin et al. (2009a) and dispersions from Girardi et al. (1996); two of them
are also low-redshift SPT detections and are circled. Left panel: velocity dispersion
vs. X-ray temperature. The solid line is the best-fit scaling relation from Girardi
et al. (1996). The dashed line shows the scaling expected if galaxies and gas were
both in equilibrium with the gravitational potential. Right panel: velocity dispersion
vs. M500c,YX

. The dot-dashed line is the N-body scaling relation from (Saro et al.,
2012).
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Table 6.5: Literature X-ray and velocity dispersion data
(This table is continued on the next page.) SPT follow-up X-ray data and data from
the literature used in Figure 6.4. For the SPT data, the redshift, number of member-
galaxy redshifts N (≡ Nmembers) and velocity dispersion from Tables 6.2 and 6.4 are
repeated for reference. The literature clusters draw their velocity dispersion from
Girardi et al. (1996) and X-ray properties from Vikhlinin et al. (2009a).

Cluster ID z N σBI TX M500c,YX

(km s−1) (keV) (1014M�)

SPT-CL

J0000-5748 0.702 26 563+124
−161 7.21+3.27

−1.90 4.35+1.08
−0.78

J0014-4952 0.752 29 811+107
−124 6.11+0.87

−0.76 5.16+0.44
−0.42

J0037-5047 1.026 18 555+96
−117 2.58+1.69

−0.87 1.87+0.64
−0.43

J0040-4407 0.350 36 1277+140
−157 6.18+1.18

−0.89 5.66+0.66
−0.56

J0102-4915 0.870 89 1321± 106 14.68+1.45
−1.14 16.41+0.99

−0.84

J0234-5831 0.415 22 926+157
−190 8.93+3.87

−2.61 6.37+1.49
−1.21

J0330-5227 0.442 71 1238± 98 3.77+0.23
−0.20 5.35+0.31

−0.30

J0346-5438 0.530 88 1075± 74 5.39+1.30
−0.94 4.60+0.68

−0.58

J0438-5419 0.422 18 1422+237
−286 11.49+1.85

−1.92 10.72+1.03
−1.13

J0449-4901 0.790 20 1090+147
−170 9.28+2.94

−1.89 6.00+1.07
−0.81

J0509-5342 0.462 21 678+73
−82 6.82+1.37

−1.07 5.60+0.67
−0.59

J0516-5430 0.294 48 724+73
−82 10.50+1.55

−1.80 11.91+1.04
−1.27

J0528-5300 0.769 20 1181+237
−299 4.63+1.04

−0.99 2.61+0.37
−0.39

J0546-5345 1.066 21 1191+202
−244 7.51+1.92

−1.41 5.37+0.81
−0.68

J0551-5709 0.424 34 966+125
−144 3.01+0.25

−0.25 2.87+0.20
−0.20

J0559-5249 0.609 37 1146+144
−164 6.19+0.54

−0.51 5.35+0.31
−0.31

J0616-5227 0.684 18 1124± 165 7.16+1.66
−1.23 5.15+0.70

−0.59

J2043-5035 0.723 21 524+72
−83 7.20+1.13

−0.85 5.04+0.48
−0.41

J2106-5844 1.131 18 1228+210
−254 12.09+3.30

−2.20 8.78+1.38
−1.07

J2145-5644 0.480 37 1638+170
−190 5.71+1.26

−0.69 5.29+0.72
−0.50

J2146-4633 0.931 17 1576+250
−298 4.17+0.56

−0.51 3.28+0.31
−0.30

J2331-5051 0.575 78 1382+132
−146 6.05+1.29

−1.15 4.48+0.59
−0.58

J2332-5358 0.402 53 1240+145
−164 7.40+1.20

−0.70 5.66+0.48
−0.48

J2337-5942 0.776 19 707+95
−110 6.72+1.49

−1.16 5.57+0.72
−0.63

J2344-4243 0.595 32 1878+236
−271 11.30+3.20

−2.08 10.93+1.72
−1.28

J2355-5056 0.320 37 1104+149
−173 4.30+1.12

−1.06 2.97+0.51
−0.53

J2359-5009 0.775 26 950+123
−141 6.41+1.92

−1.10 3.14+0.54
−0.37
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Table 6.5: Literature X-ray and velocity dispersion data (continued)

Cluster ID z N σBI TX M500c,YX

(km s−1) (keV) (1014M�)

Literature

A3571 0.039 70 1085+110
−107 6.81± 0.10 5.90± 0.06

A2199 0.030 51 860+134
−83 3.99± 0.10 2.77± 0.05

A496 0.033 151 750+61
−56 4.12± 0.07 2.96± 0.04

A3667 0.056 123 1208+95
−84 6.33± 0.06 7.35± 0.07

A754 0.054 83 784+90
−85 8.73± 0.00 8.47± 0.13

A85 0.056 131 1069+105
−92 6.45± 0.10 5.98± 0.07

A1795 0.062 87 887+116
−83 6.14± 0.10 5.46± 0.06

A3558 0.047 206 997+61
−51 4.88± 0.10 4.78± 0.07

A2256 0.058 47 1279+136
−117 8.37± 0.24 7.84± 0.15

A3266 0.060 132 1182+100
−85 8.63± 0.18 9.00± 0.13

A401 0.074 123 1142+80
−70 7.72± 0.30 8.63± 0.24

A2052 0.035 62 679+97
−59 3.03± 0.07 1.84± 0.03

Hydra-A 0.055 82 614+52
−43 3.64± 0.06 2.83± 0.03

A119 0.044 80 850+108
−92 5.72± 0.00 4.50± 0.03

A2063 0.034 91 664+50
−45 3.57± 0.19 2.21± 0.08

A1644 0.048 92 937+107
−77 4.61± 0.14 4.21± 0.09

A3158 0.058 35 1046+174
−99 4.67± 0.07 4.13± 0.05

MKW3s 0.045 30 612+69
−52 3.03± 0.05 2.09± 0.03

A3395 0.051 107 934+123
−100 5.10± 0.17 6.74± 0.18

A399 0.071 92 1195+94
−79 6.49± 0.17 6.18± 0.11

A576 0.040 48 1006+138
−91 3.68± 0.11 2.34± 0.05

A2634 0.030 69 705+97
−61 2.96± 0.09 1.74± 0.04

A3391 0.055 55 990+254
−128 5.39± 0.19 4.06± 0.10

Figure 6.4 shows the velocity dispersion versus X-ray temperature and versus

M500c,YX
. The blue points are our data, and the black crosses are the data from the

literature; these literature data are listed for reference in Table 6.5.

The left panel of Figure 6.4 shows dispersion versus TX . The empirical best-fit

scaling relation from Girardi et al. (1996), where σ ∝ T 0.61
X , is plotted as a solid line;

this scaling relation is consistent with the Vikhlinin et al. (2009a) temperatures used

here, although it was fit using X-ray temperatures from a different source, David

et al. (1993). The comparison to the temperature is especially interesting in that

there is, to first order, a simple correspondence between temperature and velocity

dispersion. Assuming that the galaxies and gas are both in equilibrium with the
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potential (see, e.g., Voit, 2005), then σ2 = kBTX/(µmp), where mp is the proton mass,

and µ the mean molecular weight (we take µ = 0.58; see Girardi et al., 1996). This

energy equipartition line is plotted as a dashed line in the left panel of Figure 6.4.

Real clusters show a deviation from this simple model, but it offers an interesting

theoretical baseline, one independent of data or simulations. This relation implies

that the temperature and velocity dispersion have a similar redshift evolution, which

is why the quantities in this plot are uncorrected for redshift.

The X-ray YX observable, while not independent from TX , is expected to be

significantly less sensitive to cluster mergers than TX , with simulations predicting YX

to have both a lower scatter and to be a less biased mass indicator (see, e.g., Kravtsov

et al., 2006; Fabjan et al., 2011). For this reason, we also plot the velocity dispersion

against M500c,YX
(times a redshift-evolution factor), in the right panel of Figure 6.4.

The dot-dashed line is the scaling relation predicted from the simulation analysis of

Saro et al. (2012).

The residuals of the dispersion-M500c,YX
relation have a measured vertical scatter

of (34± 5)%, which is larger than but consistent with the full-sample (28± 3)%. The

extra scatter is not expected to come from the M500c,YX
measurements, which have a

mean statistical uncertainty of 14% and intrinsic scatter in mass at fixed YX of 7%

(Kravtsov et al., 2006), for a total of 16% when added in quadrature, smaller than

the 21% M500c,SZ mean uncertainties (which include the intrinsic scatter).

134



Chapter 7

Conclusion and next steps

We have presented a program for the optical spectroscopic follow-up of SPT clus-

ters, and the first results from the measurement of the clusters’ cosmological redshifts

and velocity dispersions. Our resampling analysis has shown that the strategy of ob-

taining the velocities of few members per galaxy cluster works for obtaining unbiased

velocity dispersions as long as a proper statistical methodology is used. Our resam-

pling analysis has also provided a basic understanding of the uncertainties associated

with our measurements.

Systematics remain that are not well understood yet, and will need to be for these

data to be used to their fullest extent, that is for informing the mass calibration of

SPT-SZ clusters, and therefore the derived cosmology. In the following, we reflect on

the way to approach mass calibration using the velocity dispersions presented above.
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Velocity dispersion systematics and mass scaling relation fit

Achieving a mass calibration of clusters using velocity dispersions relies on the

halo dispersion vs. mass scaling relation from N-body simulations. Yet, there is a

significant difference between the dark-matter halo dispersions in simulations, and the

cluster velocity dispersions that are measured from a color- and magnitude-selected

sample of galaxies, with geometric constraints as we have seen in Section 3.3.

The systematic effects that could lead to bias in the dispersions relative to the

dark matter simulations (or increase the measured scatter) include:

• Color selection and membership selection. This was discussed in some detail in

Section 5.1.3. Saro et al. (2012) suggests that the measured velocity dispersions

can be biased by a few to 10% by the color selection and membership selection.

• The sampling of the luminosity function and location of the members in color

space. The magnitudes are important as a proxy of the galaxy masses, as

more massive galaxies are expected to be affected by dynamical friction; the

distribution of the central galaxy velocities in Section 6.1.3 is an illustration of

this. The spatial and luminosity-function sampling, as can be characterized by

the aperture of the observations and the magnitudes of the targeted galaxies, can

change the measured dispersion by order 5% to 10% (Zhang et al., 2011). We

note that the geometric constraints of slit placement in multislit spectroscopic

observations have the effect of selecting targets of varying magnitudes even if

the brightest galaxies are prioritized, so that in the few-mask regime where we

are operating, there will not be a large difference in magnitude distribution

between different masks.
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• The spatial sampling of the cluster. The velocity dispersion profile can vary

significantly from one cluster to another and the velocity dispersion is often

higher but can be lower in the core of the cluster by a significant amount (Mohr

et al., 1996; Girardi et al., 1996). Saro et al. (2012) find the velocity dispersion

at small aperture to be biased high on average by a few percent to 10%. The

bias can grow to be quite large at apertures larger than 1.5R200c, because of the

large interloper fraction. It should only be a few percent in the aperture range

of most of our observations.

Those systematics will need to be accounted for in fitting the scaling relations.

We outline two different ways in which this could be done.

Simulations

The first approach is to produce simulations that not only encapsulate the correct

dynamics of halos, but also reproduce the characteristics of observations, and fit not

a dark matter halo dispersion vs. mass scaling relation, but an “observed” dispersion

vs. mass scaling relation. The most suitable simulations so far in the literature can

be found in Saro et al. (2012), and it is not a coincidence that some of the authors

are SPT collaborators.

Saro et al. (2012) identifies subhalos in the simulation as galaxies, and assigns

them colors and magnitudes following the “semi-analytic model” (SAM; De Lucia &

Blaizot, 2007). Each cluster is then pseudo-observed along many different lines-of-

sight, where the observed galaxies in each observation are selected to lie close to the

red sequence, and chosen within a given aperture radius, which corresponds to the
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field-of-view of the spectrograph. This approach relies on the color painting of both

the cluster and field galaxies to be accurate, which is a possible source of systematic

effects.

Low-redshift / archival study

The second approach is to quantify systematics using observations of real clusters

of galaxies that have good photometry and extensive spectroscopy, such as hundreds

of member galaxy redshifts, and large numbers of field galaxies as well. Such datasets

exist at lower redshifts than those of the SPT sample.

The galaxy redshifts can be used first, without any kind of color selection, to

derive a mass solely from the phase-space location of galaxies, a procedure that can be

replicated in dark-matter only simulations. For instance, the caustic technique (see,

e.g. Serra et al., 2011) can yield such a M200c. Once this reference mass is computed,

color-selected pseudo-observations resembling our observations of SPT clusters can

be sampled from each cluster. Comparison to the reference mass can quantify the

systematic effects of distance from the cluster center, as well as galaxy color and

magnitude selection, and produce an observational prescription for accounting for

them.

Ideally, both the path of simulations and of resampling would be pursued in par-

allel, and the resampling from existing observations would provide feedback and val-

idation for the simulation work.

Additional studies of simulations and observational validation of those results are

necessary future steps for the mass calibration. The present sample is too small
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to carry out the next step in this validation cycle, which will require the study of

clusters that are densely sampled spatially and in their luminosity function, possibly

with hundreds of measured member redshifts, specifically in relation to simulations

and the systematics listed above.
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wein, E., Sijacki, D., & Girardi, M. 2011, A&A, 526, A105

143


