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Abstract

Much health related research depends heavily on the analysis of a rapidly expanding universe of
observational data. A challenge in analysis of such data is the lack of sound statistical methods
and tools that can address multiple facets of estimating treatment or exposure effects in obser-
vational studies with a large number of covariates. We sought to advance methods to improve
analysis of large observational datasets with an end goal of understanding the effect of treatments
or exposures on health. First we compared existing methods for propensity score (PS) adjustment,
specifically Bayesian propensity scores. This concept had previously been introduced (McCandless
et al., 2009) but no rigorous evaluation had been done to evaluate the impact of feedback when
fitting the joint likelihood for both the PS and outcome models. We determined that unless spe-
cific steps were taken to mitigate the impact of feedback, it has the potential to distort estimates
of the treatment effect. Next, we developed a method for accounting for uncertainty in confound-
ing adjustment in the context of multiple exposures. Our method allows us to select confounders
based on their association with the joint exposure and the outcome while also accounting for the
uncertainty in the confounding adjustment. Finally, we developed two methods to combine het-
erogenous sources of data for effect estimation, specifically information coming from a primary
data source that provides information for treatments, outcomes, and a limited set of measured
confounders on a large number of people and smaller supplementary data sources containing a
much richer set of covariates. Our methods avoid the need to specify the full joint distribution of

all covariates.
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Preface

Increasingly, health effects research relies on large, observational datasets. Compared to clinical
trials, the analyses of these databases allow us to study a much larger population and to investi-
gate additional questions of interest. However, analysis of these large and complex administrative
databases raises several methodological challenges and requires the development of new statisti-
cal methods. Comparing the effectiveness of treatment strategies or the health effect of exposure
to harmful agents in observational data is challenging in part because people are not randomly
assigned to treatment strategies or exposures, which introduces the likely possibility that outcome
comparisons are confounded by factors that simultaneously relate to exposure status, treatment

choices, and health outcomes.

Here, we attempt to advance existing research by evaluating existing methods and developing
new methods for confounding adjustment in large observational datasets. First, in Chapter 1,
we look at Bayesian propensity score methods, formally introduced by McCandless et al. (2009).
Bayesian methods have natural appeal because separate likelihoods for what is normally a two
stage procedure can be combined into a single joint likelihood, with estimation of the two stages
carried out simultaneously. In theory, this makes more complete use of the data than traditional
frequentist propensity score methods. One key feature of joint estimation in this context is “feed-
back” between the outcome stage and the propensity score stage, meaning that health outcome
data contributes to the estimation of the posterior distributions of the propensity score. This has
been criticized as violating the principles of objective experimental design (Rubin, 2007, 2008). If
propensity scores are meant to approximate the design stage of a randomized study, any access
to outcome when calculating the propensity score fails to ensure that objective design decisions
are completely separate from analysis decisions. However, methods that incorporate outcome
information have also been advocated (Schneeweiss et al., 2009, McCandless et al., 2009) We found
that a rigorous investigation of exactly how feedback can impact estimation of causal effects was
lacking. We provide this rigorous assessment of Bayesian propensity score estimation and demon-
strate that model feedback can bias estimates of the causal effect absent strategies to ensure that
the propensity score maintains its properties as a balancing score. Much of this was joint work

with Corwin Zigler and large portions of the first chapter have been published in the paper titled
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Model Feedback in Bayesian Propensity Score Estimation (Zigler et al., 2013). In Chapter 1, we also add

the following contributions:

e An analysis of an approximately Bayesian method that “cuts the feedback” from the out-
come model to the propensity score model. Zigler et al. (2013) compare the joint Bayesian
method to an traditional sequential approach; here we add in a comparison to a sequential
Bayesian approach as well. This method is originally described by McCandless et al. (2010).
Here we redefine the method, evaluate it in our simulation study and apply it to a com-
parative effectiveness analysis of carotid artery stenting versus the more traditional carotid

endarterectomy.

e Comparison of the methods” performances in the situation where either the propensity score
or outcome model is misspecified. Zigler et al. (2013) note that augmenting the propensity
score adjustment in the outcome model with adjustment for every covariate that appears in
the propensity score model is “akin to those previously developed to yield “doubly robust”
estimators” (Bang and Robins, 2005, Little, 2011) but do not explore whether this model shares
the desirable features of a doubly robust estimator. Here we conduct a simulation study to
evaluate the performance of the joint Bayesian, sequential Bayesian and traditional sequen-

tial approaches in these settings.

In Chapter 2 we develop a method for confounding adjustment in the setting of multiple ex-
posures or treatments. This method is developed in the context of air pollution epidemiology.
Currently, most epidemiological studies examine health effects associated with exposure to a sin-
gle environmental contaminant at a time. However, humans are exposed to many environmental
agents at once and therefore epidemiological studies need to change focus to this more realistic
setting. One challenge with the transition from a single exposure to multiple exposures is the lack
of a formal approach to select which measured confounders should be included in the outcome
model. Standard approaches for selecting confounders in the context of a single exposure are not
adequate in the context of multiple exposures; the set of confounders of an outcome associated

with simultaneous exposure to more than one exposure or treatment cannot be fully characterized

xiii



by the confounders of the effect of each individual exposure separately. The key task is to identify
confounders that are jointly associated with multiple exposures and the outcome. In this chapter,
we will make two contributions. First, we will clarify the difference as to what constitutes a true
confounder in multiple exposure settings versus single exposure settings. A true confounder in
the multiple exposure setting is any covariate that confounds the relationship between simultane-
ous exposure to multiple pollutants and the outcome of interest. This could be a covariate that is
marginally associated with one or more exposures - and, hence, would also be a confounder in the
single exposure setting - or one that is jointly associated with multiple exposures (and might not
be a confounder in the single exposure setting). Second, we will develop a statistical framework
to adjust for confounding in the presence of multiple exposures while accounting for uncertainty
in the confounding adjustment. Recently (Wang et al., 2012) introduced Bayesian Adjustment for
Confounding (BAC) as a method to select confounders in the single exposure setting. BAC uses a
Bayesian approach to model averaging to estimate the health effect associated with exposure to a
single pollutant while acknowledging the uncertainty in the confounder selection. We introduce
BAC for multiple exposures (BAC-ME) to extend this framework where selection of confounders
is based on simultaneous exposure to multiple pollutants. Our method allows us to select a subset
of covariates to include to control for confounding in a linear regression model while protecting
against the possibility of eliminating a true confounder. This also helps identify true confounders
for future research efforts. We show through simulation studies that it is of paramount importance
to include all confounders in the outcome model and that excluding only one true confounder
could lead to substantial bias in estimation of the multi pollutant adverse health effect. We also
apply our method to a retrospective epidemiological study aimed at estimating the multi pollutant
adverse effect on cardiovascular hospitalization associated with a simultaneous change in ozone
and PM3y 5, controlling for weather data and population level characteristics. This work has been
submitted for publication (Bayesian Adjustment for Confounding in the Presence of Multiple Exposures,

Krista Watts, Corwin M. Zigler and Francesca Dominici)

In Chapter 3 we develop two methods to combine data from heterogeneous data sources when
the goal is to compare the effect of two treatments or exposures. We look specifically at the set-
ting where we have information coming from a primary data source that provides information for

treatments, outcomes, and a limited set of measured confounders on a large number of people and

Xiv



smaller supplementary data sources containing a much richer set of covariates. Often, important
confounders are not measured in the primary data. However, the supplemental data source may
contain information on important confounders in a subset of the population. Current methods
for combining such data sources for analysis require specifying the joint distribution of all data
(Little and Rubin, 2002). When the missing covariates are high dimensional, correlated, or contain
both continuous and dichotomous or categorical variables, correctly specifying this distribution is
nearly impossible. Recently, McCandless et al. (2012) suggest a method to use ‘conditional propen-
sity scores’ to adjust for confounders available only in a supplementary dataset. We propose two
methods that build on their work. We conduct a simulation study to show settings when our
methods can substantially reduce bias over complete case analysis or ‘naive’ analysis that adjusts
for only the fully measured covariates. We expect to submit this work for publication in the next
tew weeks (Propensity Score Methods for Combining Data Sources, Krista Watts, Corwin M. Zigler,

Yun Wang and Francesca Dominici)
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1.1 Abstract

Methods based on the propensity score comprise one set of valuable tools for comparative effec-
tiveness research and for estimating causal effects more generally. These methods typically consist
of two distinct stages: 1) a propensity score stage where a model is fit to predict the propensity to
receive treatment (the propensity score), and 2) an outcome stage where responses are compared
in treated and untreated units having similar values of the estimated propensity score. Traditional
techniques conduct estimation in these two stages separately; estimates from the first stage are
treated as fixed and known for use in the second stage. Bayesian methods have natural appeal in
these settings because separate likelihoods for the two stages can be combined into a single joint
likelihood, with estimation of the two stages carried out simultaneously. One key feature of joint
estimation in this context is ‘feedback’ between the outcome stage and the propensity score stage,
meaning that quantities in a model for the outcome contribute information to posterior distribu-
tions of quantities in the model for the propensity score. We provide a rigorous assessment of joint
Bayesian propensity score estimation to show that model feedback can produce poor estimates of
causal effects absent strategies that augment propensity score adjustment with adjustment for in-
dividual covariates. We also explore an approximately Bayesian sequential method and show that
adjustment for individual covariates is not required to obtain an unbiased estimate of the causal
effect. We illustrate this phenomenon with a simulation study and with a comparative effective-
ness investigation of carotid artery stenting vs. carotid endarterectomy among 123,286 Medicare

beneficiaries hospitalized for stroke in 2006 and 2007.

1.2 Introduction

Propensity scores (PS) are an often used tool for comparing the effectiveness of clinical treatments
as they are applied in routine practice (Rosenbaum and Rubin, 1983). PS methods are used
to estimate causal effects that are not confounded by observed characteristics. Traditionally,
estimating causal effects with PS methods is achieved in two stages: 1) a ‘PS stage’ where a

model is fit to predict the receipt of treatment from available covariates, with the predicted values



from this model representing the estimated PS, and 2) an ‘outcome stage” whereby outcomes of
treated and untreated units are compared among units with similar values of the PS. Typically,
the two-stage nature of the problem is accommodated by separate and sequential estimation; a
model is fit in the PS stage, then the estimated PS from this model are treated as fixed and known
to conduct adjusted comparisons in the outcome stage. In this paper, we are considering a model

base approach for both stages and will refer to the PS and outcome models from here forward.

Recently McCandless et al. (2009) proposed Bayesian estimation as a means to jointly estimate
quantities in the PS and outcome models. One major motivation for Bayesian PS estimation
is that jointly estimating quantities in the two models propagates uncertainty in estimation of
the PS into estimation of the treatment effect, whereas one conceivable limitation of traditional
sequential methods is that they potentially misstate the uncertainty in causal estimates by treating
the estimated PS as a known quantity in the outcome stage (Gelman and Hill, 2007). The key
idea with joint Bayesian PS estimation is that the PS is acknowledged as an unknown quantity,
uncertainty about which is integrated out of posterior distributions of quantities in the outcome
stage. Aside from providing a more comprehensive account of uncertainty, clear potential lies in

incorporating PS methods into the broader literature on Bayesian methodology.

One important feature of joint modeling with Bayesian estimation is that doing so allows ‘feed-
back’” between the models. In the PS context, this means that posterior samples of parameters
in the PS stage are informed in part by information from the outcome stage, rendering the
problem of Bayesian PS estimation substantially more complex than a simple Bayesian analog to
well-established procedures. In fact, the notion of estimation and use of the PS in a joint likelihood
has generated some controversy. One view is that the PS is meant to approximate the design stage
of a randomized study, and that this should be done without any access to the outcome in order
to ensure objective design decisions that are completely separate from analysis decisions (Rubin,
2007, 2008). Nonetheless, methods that incorporate outcome information have been advocated

(Schneeweiss et al., 2009, McCandless et al., 2009). In principle, incorporating feedback in joint



Bayesian estimation entails estimates of the PS themselves that make more complete use of the
data, which could improve estimation of causal effects. However, a rigorous investigation of

exactly how feedback can impact estimation of causal effects is lacking.

In what follows we illustrate that, in general, model feedback in joint Bayesian estimation
can result in biased estimates of the treatment effect. Unlike traditional sequential procedures
that estimate the PS based solely on information on how covariates relate to the treatment, we
show that joint Bayesian estimation with feedback uses information from the outcome model to
construct the PS, and that feedback from this model can distort the nature of the PS and impair
its ability to adjust for confounding. We also demonstrate two techniques that can recover the
causal effects: changing the nature of the feedback by using outcome models that augment PS
adjustment with adjustment for individual covariates, and ‘cutting’ the feedback by using an

approximately Bayesian sequential approach.

Using nationwide data on 123,286 Medicare beneficiaries, we illustrate joint Bayesain PS esti-
mation in a comparative effectiveness investigation regarding the recent increase in the use of
carotid artery stenting (CAS) for treatment of carotid artery disease (a primary cause of stroke),
as compared to the more established carotid endarterectomy (CEA) procedure. Because these
therapies are not randomly applied in clinical practice, we use several clinical characteristics to
adjust for confounding when estimating a causal treatment effect. We compare the results of
the joint Bayesian analysis and sequential Bayesian analysis both with and without individual

covariate adjustment with a traditional sequential approach.

1.3 Propensity Score Estimation

For a binary treatment, X = 0,1, an outcome, Y, and a vector of p covariates (C1,Cs,...,C,),

Rosenbaum and Rubin (1983) defined the PS as the conditional probability of assignment to



treatment X = 1, given the covariates. Causal inference with the PS relies on two important
features. First, treatment assignment must be assumed strongly ignorable; that is, there must
be no unmeasured confounders. Second, by virtue of the fact that the PS reflects the treatment
assignment mechanism, the PS enjoys the property of a balancing score, resulting in conditional
independence between the treatment and the individual covariates, conditional on the score:
X L Cy,...,Cy|PS. This balancing score property combined with the assumption of strongly
ignorable treatment assignment allows average comparisons between treated and untreated
outcomes at a given value of the PS to serve as an unbiased estimate of the average treatment

effect at that value of the PS.

1.3.1 PS and outcome models

PS methods consist of two distinct parts: the estimation of the PS and estimation of the causal
effect conditional on the PS. The PS model models the probability that X = 1 (given covariates):
92(E[X|C]) = Cv, where g,(-) is a link function, and C is the collection of pretreatment covari-
ates plus an intercept, C = (1,C1,Cs,...,C,). Thus, the PS model can be represented with the

following likelihood:

n

L(X[y,C) = []lgz (€[ — gz (Con)] 5, (1.1)
=1

where here and throughout, boldface is used for vectors and matrices representing the values for
the entire sample, and ¢ = 1,...,n indexes observational units. With this formulation, the values

of v and C; determine the PS for the ' unit.

Consider a binary outcome, Y = 0, 1, but note that results in the following hold for other out-
comes. We define a model for the outcome, conditional on the PS: g,(E[Y|X,C]) = & + X +
¢h(v,C) + CT4, where g, (-) is another link function, the deterministic function h(y, C') specifies
how the PS enters the outcome model, and the term C*§ denotes possible residual adjustment for

some subset C* € C in addition to the PS. For example, h(~y,C') = Cy would specify linear adjust-



ment for the linear predictor term from model (1.1), and § = 0 would indicate adjustment for the
PS only. Alternatively, h(v, C) could specify dummy variables for membership in subclasses de-
fined by ¢ quantiles of the PPS, and § # 0 would augment PS adjustment with individual covariate

adjustment within subclass. We express the outcome stage likelihood as:

n

L(Y|8,¢,X,C,7,6) = [ [lg, ' (€o+BXi+En(v, Ci)+6CH)Y [1—g, (Co+BXi+ER(y, Ci)+0C;H)]F
=1

(1.2)

The primary objective is to estimate the causal effect of X = 1vs. X = 0 on Y. Towards this
end, the conditional parameter 8 may be of primary interest as this quantity represents the
conditional (on the PS) causal effect. If the marginal effect is of primary interest, it can be obtained
by marginalizing with respect to the empirical distribution of the covariates. Issues such as non
collapsibility may prevent estimation of the marginal causal effect regardless of method used, but
any effort to obtain the marginal effect requires estimation of 3 as a precursor step. Therefore,

what follows equates estimation of causal effects to estimation of 3 for ease of illustration.

1.3.2 Traditional sequential estimation

Traditional PS procedures conduct estimation in the PS and outcome models completely sepa-
rately. Estimates of v are obtained from (1.1) to construct the estimated PS. Then, the estimated
PS are treated as known quantities in the outcome model. That is, with estimated 4, estimation of

the treatment effect follows from L(Y |3, ¢, X, C, 7, d) specified in (1.2).

An important feature of this approach is that it makes no attempt to recover the entire covariate-
outcome relationship. Rather than specify a model for the relationship between each covariate
and the outcome, the outcome model conditions on a one-dimensional summary of multivariate
covariate information (the PS), with the dimension reduction specifically determined by fitting

the PS model in (1.1). Of key importance is that this dimension reduction reflects the treatment



assignment mechanism to ensure the balancing score property. Other dimension reductions of C,
e.g. with different values of v, may fail to reflect p(X = 1|C), and are not guaranteed to possess

the balancing score property at the heart of PS methods.

With sequential estimation, estimates of v from (1.1) are obtained in a manner that completely
ignores quantities in the outcome model such as 3, ¢, and Y. As we elaborate in the following
sections, the primary difference with joint Bayesian estimation is the presence of feedback, which
means that specification of the outcome model affects estimates of v. The sequential Bayesian
estimation ignores quantities in the outcome model when estimating ~ but rather than treating

the estimate of the PS as fixed quants, it considers their entire posterior distribution.

1.4 Bayesian Estimation and Model Feedback

In this section we formalize Bayesian PS estimation and illuminate in detail the role of model
teedback. In contrast to the sequential procedure described in Section 1.3.2, Bayesian PS estimation

combines the models in (1.1) and (1.2) into a single joint likelihood:

n

L(Y,X|C,7,8,¢,6) = [ [lg. "(CinI X1 — g, (Cim)]' ¥ (1.3)
=1

9, " (&0 + BXi + ER(7, Ci) + 6CHM 1 — g, (o + BXi + Eh(y,Co) + SCH' Y. (1.4)

The likelihood in (1.3)-(1.4), together with the prior distribution for (v, 3, &, 0) serves as the basis
for posterior inference. Recall that h(v, () is a deterministic function of v, which means that the
PS themselves are treated as unknown quantities that are updated with every posterior update
of v. Model feedback in this case arises because both terms of the likelihood contribute to the

posterior distribution of .



Throughout, we use a Metropolis-Hastings MCMC algorithm to sample from posterior distribu-
tions. We conduct the MCMC using two sampling blocks: one updating v from its conditional
posterior distribution, which corresponds to an update of the PS as well, and another block
updating all parameters in the outcome model. Note from the likelihood in (1.3)-(1.4) that
although updating v conditional on (3,&,§) -which corresponds to an update of the PS -will
involve both terms of the likelihood, only term (1.4) - the likelihood for the outcome model -

contributes to updating (3, &, ) conditional on .

To illustrate the fundamental features of feedback implied by joint estimation of (1.3)-(1.4), the
remainder of this section considers the simplified setting where the PS is included in the outcome

model as a linear predictor; that is, we assume that i(y, (') = Cy and that £ = &;.

1.4.1 Algebraic Illustration of Feedback

Purely for illustration, take g, *(-) and 9y 1(.) as the Normal CDF, ®(-), representing Probit regres-
sion in the PS and outcome stages, and take all prior distributions o< 1. Following Albert and Chib
(1993), the Probit link allows Bayesian estimation with a data-augmentation procedure that iter-
atively samples latent continuous data from a truncated normal distribution with unit variance
such that the latent X*(Y™*) are > 0 when X = 1(Y = 1), and < 0 otherwise. Conditional on

(X*,Y™),

* * 1 * *
p(7767§75|X 7Y 7X70) X exp{_i[(x - CW)T(X - Cf)/)

+(Y* = &oln — BX — &Cy — CTO)T(Y* — &ola — BX — &Cy — CTo)]},

C is the n x (p + 1) design matrix, and 1, is a n—dimensional vector with every entry equal to

one. Thus, the conditional posterior distribution of v can be written as:

p(YIX*, Y*, X, C, B,£,6) o exp{y" (CTC(1 + &)y — 29" [CT(X* + &(Y* — &1n — BX — CT6))]}



which corresponds to the kernel of a Normal distribution with covariance matrix (CTC(1+¢2))!
and mean (CTC(1 + &))" 1(CT(X* + &(Y* — &1n — X — C16))). Immediately we see that
when &; # 0, quantities from the outcome model contribute to the posterior distribution of v and,

by extension, the PS. This is the nature of model feedback.

1.4.2 Implied parameterization of the covariate-outcome response surface

Until otherwise noted, asssume an outcome model that only adjusts for the PS; that is, assume
0 = 0. Considering the joint likelihood in (1.3)-(1.4) implies a parameterization of the covariate-
outcome response surface conditional on X. We re-express { + X + &h(y, C) from term (1.4)

as:

§o+BX + & (o +mC1+ ... +1Cp) = (&0 +&170) + BX +EmCr + ...+ &7 (1.5)

This parameterization implies that the covariate-outcome relationship for the k' covariate is
described by &1, that is, that every covariate-outcome relationship is a rescaled version of
the covariate-treatment relationship, with the same re-scaling factor (1) for every covariate.
The key feature of model feedback is that posterior estimates of v are informed in part by
this parameterization of the outcome model, which may imply information about v that is
not consistent with the treatment assighment mechanism. In particular, this will occur if the
underlying covariate-outcome relationship cannot be expressed as a simple rescaling of the

covariate-treatment relationship.

To further illustrate, consider a simple setting where the true underlying relationships between p

covariates, treatment, and outcome can be described as follows:

92 (P(X; =1|C3)) = v +1Cit + ... +%Cip and (1.6)



gy(P(Y,‘ =11X;,C)) =ap+ X+ a1Cin + ... + apCip. (1.7)

With the above data-generating mechanism, the joint likelihood in (1.3)-(1.4) with § = 0 correctly
models (1.6), but entails linear adjustment for g,(PS), rather than a model for the complete
covariate-outcome relationship in (1.7). Combining the above data-generating mechanism with
the systematic component of the outcome model paramaterized as in the right hand side of
(1.5) corresponds to vy = QOT;&’ and y; = %,72 = %, Y = %, meaning that the only
way that the PS and outcome modeling stages can imply the same values of v is if o = &1k
for all k. If this relationship does not hold, then feedback from the outcome model will yield
posterior estimates of v that do not reflect the true treatment-assignment mechanism in (1.6),
meaning that (v, C) is not technically a function of the PS and may not be a balancing score.
Thus, Bayesian estimation with (1.3)-(1.4) and 6 = 0 is not guaranteed to yield estimates
of § that reflect the causal treatment effect. In contrast, the sequential strategy in Section

1.3.2 estimates v without regard to the outcome model, thus ensuring that h(y,C') maintains

the balancing score property. We illustrate this phenomenon in the simulation study of Section 1.5.

1.4.3 Augmenting PS adjustment with individual covariates

The above feature of joint Bayesian PS estimation is not a feature of model feedback in general, but
rather a byproduct of the dimension reduction implied by using the PS as a univariate summary of
covariate information. Consider instead a model with § # 0 that adjusts for covariates in addition
to the PS. With h(y,C) = Cv, C™ can include at most (p — 1) covariates to prevent perfect linear
dependence in the design matrix for the outcome model. In this case, setting C™ = (Cs,...,C}),

the right hand side of expression (1.5) becomes:

(S0 +&170) + BX + 6701 + (§172 +61)Ca + ... + (§17p + p—1)Cp.
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While setting § # 0 still implies feedback, the feedback does not impose the same restriction
on the relationship between the covariate-treatment and covariate-outcome relationships which
allows estimation of - in accordance with the treatment assignment mechanism, thus maintaining
the balancing score property. In other words, setting § # 0 allows the additional flexibility of
modeling the covariate-outcome relationship without assuming that this relationship is a scalar
multiple of the covariate-treatment relationship. The simulation study in Section 1.5 illustrates
this phenomenon, and examines its benefits it situations where either the PS model or the

covariate adjustment in the outcome model is misspecified.

1.4.4 Cutting the feedback

McCandless et al. (2010) present the idea of an approximately Bayesian method that ‘cuts the
feedback’ from the outcome model to the PS model as an alternative to the fully Bayesian
approach. We still use a Metropolis-Hastings MCMC algorithm but we do not sample from the
joint posterior distribution. We cut the feedback from the outcome model to the PS model by first
updating v from the distribution defined by (1.3) and the prior distribution of . This posterior
distribution ignores the likelihood contribution from (1.4). We then update (5,&,9) given ¥
from the posterior defined by defined by (1.4) and the prior distribution of (3,£,6). Cutting
the feedback from the outcome model to the PS model eliminates any restrictions between the
covariate-treatment/covariate-outcome relationship as they are modeled separately. Of note, the
sequential Bayesian method primarily differs from the traditional sequential approach in that
it does not treat the estimated PS as a fixed quantity. Rather, it makes use of the full posterior
distribution of the PS by updating the estimated PS in the outcome model at every iteration of
the MCMC. Residual confounding adjustment by allowing § # 0 is still possible but is no longer

necessary to ensure h(y, C') maintains the balancing score property.
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1.5 Simulation Study

In this section we present a simulation study to illustrate that the features described in the
simplified setting of Section 1.4 persist in settings with more flexible specification of h(vy,C).
All simulated datasets contain n = 1000 observations and p = 6 covariates, simulated from the
following data-generating scheme. First, C'1,...,Cs are simulated from a multivariate normal
distribution with mean (0, 0,0, 0, 0, 0) and the identity covariance matrix. For all i, X is simulated
from a Bernoulli distribution with:

exp(vo +71Ci1 + ... +76Cis)

P(X; = 1|C;) = : 1.8
( Ci) 1+exp(y0 +71Cin + .- +7Cis) (18)

All'Y; are similarly generated from Bernoulli distributions with:

exp(ao + 68X +a1Cin + ...+ 05601'6)
PY,=1\X,;,C;) = . 1.9
( ‘ ) 1+ eXp(ao + 68X +a1Cin 4+ ...+ 04601‘6) (19)

The values of v specify the true treatment assignment mechanism, those of « specify the true
covariate-outcome relationship, and /5 is the conditional treatment effect. For all simulations, we

set 5 = 0.0.

We simulated 1000 data sets under each scenario described below, and analyzed the simulated
data with the joint Bayesian method described in Section 1.4, both with and without residual
confounding adjustment, and with the sequential Bayesian method described in Section 1.4.4.
For comparison, we obtain maximum likelihood estimates of 5 using the traditional sequential
procedure of Section 1.3.2 and from fitting model (1.9) directly, referring to the latter as the ‘Gold

Standard’ since we know that this is the true data-generating mechanism.
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exp(-)
1+exp(-)

Throughout analysis of the simulated data, we specify both g; () and 9y 1(.)as , indicating
logistic regression in both model stages. Unlike the simple illustrations provided in Section 1.4,
we take a more flexible modeling approach that stratifies units on quintiles of the logit(PS) and
estimates the same 3 across PS strata. Adjustment for PS subclass is augmented with additional
covariate adjustment (0 # 0) when noted. For the Bayesian analyses, every posterior update of
v implies an update of the PS, so the quintiles of logit(PS) are recalculated and the PS subclasses
redefined at every MCMC iteration. We specify diffuse prior distributions for all parameters as
Normal with mean 0 and variance 10'°. In addition to comparing estimates of 3, we also compare
methods on the basis of estimates of «, which determine the estimated PS. For point estimation,
we use posterior mean estimates for the Bayesian methods, obtained from three MCMC chains,
each run for 10,000 iterations, with the first 5,000 discarded as burn in and every 10th sample
saved for posterior inference. Note here that application of PS methods in practice should involve

an investigation of whether covariates are balanced within PS subclass, which we forego in the

simulation study. Balance checks are addressed in detail for the data analysis in Section 1.7.

1.5.1 Scenario where the covariate-outcome relationship is a simple rescaling of the
covariate-treatment relationship

Scenario 1 generates data with parameters in (1.8) and (1.9) set to (y0,71,72,73, V4, V5, V6) =
(0.0,0.3,0.3,0.3,0.3,0.3,0.3) and («vg, a1, @z, az, ag, as,a6) = (0.0,0.5,0.5,0.5,0.5,0.5,0.5). This
scenario represents a unique special case where 7 = £ and where the joint bayesian method

should be capable of recovering the treatment effect without augmenting the outcome model

with additional covariate adjustment.

We analyze the data with 6 = 0. Figure 1.1 depicts boxplots of the resulting posterior estimates
of v and 3 for both the joint Bayesian sequential Bayesian methods, along with estimates from
the traditional sequential approach. We see that, on average, all three methods produce point

estimates of 7 that are similar and agree with the true parameter values from (1.8). For v,...,7s,

13



point estimates are less variable with the joint Bayesian method, which is to be expected because
posterior distributions of these quantities involve additional information via feedback from the
outcome model. Estimates of 3 are also similar between the methods. Again, this simulation
illustrates the special case where the PS and outcome models imply the same values of v, so
posterior estimates of h(v, C) reflect the treatment assignment mechanism and the joint Bayesian

method estimates the causal effect.
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Figure 1.1:  Scenario 1 with (70771;72773»74775,76) = (00>03303,03703,03703)/ and (OZOaalv

ag, o3, a4, a5,06) = (0.0,0.5,0.5,0.5,0.5,0.5,0.5): boxplots of estimates of v and 5 from the traditional
sequential, joint Bayesian and sequential Bayesian analyses of 1000 replicated data sets. Horizontal dotted
lines are at the true parameter values.

1.5.2 Scenario where one covariate exhibits a different covariate-treatment/ covariate-
outcome relationship

Appealing to the discussion in Section 1.4, we simulate Scenario 2 with 5 covariates having the
same covariate-treatment/covariate-outcome relationship, with the sixth covariate exhibiting a
different relationship. This setting illustrates the effect that model feedback can have on joint
Bayesian estimation when the covariate-outcome response surface cannot be expressed as a

simple rescaling of the covariate-treatment surface. Towards this end, we simulate data as in
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Scenario 1, except we change ¢ to -0.3 so that y # £..

We first analyze the data with 6 = 0. Figure 1.2a depicts boxplots of estimates of v and /5 from
all three estimation methods. Unlike in Scenario 1, we see that, on average, the joint Bayesian
method produces different estimates of 71,...,76 than either the sequential Bayesian method
or traditional sequential method, whereas the latter two estimates agree. While both sequential
approaches estimate v in accordance with the treatment assignment mechanism in (1.8), the
joint Bayesian method estimates different values of ~, with the most pronounced difference for
76. In the joint Bayesian method, the quantity A(v, C') does not reflect the treatment assignment
mechanism, and is not guaranteed to serve as a balancing score. The result is posterior estimates
of 8 with poor performance relative to estimates from the sequential procedures. This illustrates
how feedback can distort the balancing score property of the PS and yield estimates of 5 that do

not reflect a causal effect.

We argued in Section 1.4.3 that augmenting PS adjustment with individual covariates can prevent
feedback from distorting estimates of v in the joint Bayesian approach. Because we know in this
simulated example that one covariate exhibits a different relationship with the treatment, we re-
analyze these simulated data sets with an outcome model that adjusts for Cs within PS subclass.
That is, we let § # 0 and C* = Cg in (1.2), referring to this analysis as Scenario 2. Point estimates
from this analysis are compared in Figure 1.2b. We include the sequential Bayesian method for
comparison purposes, although as noted in section 1.4.4 and shown in Figure 1.2a, this adjustment
is not necessary for this method to maintain the balancing property. Compared to the analysis that
adjusts only for the PS, the model that augments PS estimation with additional adjustment of Cg
produces estimates of 1, . . ., 76 that are much more similar between the three estimation methods,
implying that the joint Bayesian method with § # 0 comes closer to capturing the true treatment
assignment mechanism. As a result, estimates of 3 are similar in the joint Bayesian and sequential

estimation approaches, although the methods do not produce the exact same estimates.
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Figure 1.2: Scenarios 2 and 2% with (y0,71,72,73,7,75.%) = (0.0,0.3,0.3,0.3,0.3,0.3,—0.3), and
(v, 011, i, a3, a5, 06) = (0.0,0.5,0.5,0.5,0.5,0.5,0.5): boxplots of estimates of v and 3 from the sequen-
tial frequentist, joint Bayesian and sequential Bayesian analysis of 1000 replicated data sets. Horizontal
dotted lines are at the true parameter values.

1.5.3 Scenario where every covariate exhibits different covariate-treatment/ covariate-
outcome relationship

Finally, we simulate Scenario 3 so that the covariate-treatment/covariate-outcome relation-
ship is different for every covariate. For the PS model (1.8) we set (y0,71, 72,73, 74,75, 76) =
(0.0,0.1,0.2,0.3,0.4,0.5,0.6). For the outcome model (1.9) we set (ap, a1, ag, a3, aq, a5, ) =

(0.0,0.6,0.5,0.4,0.3,0.2,0.1).

We first analyze the data with 6 = 0. From Figure 1.3a, we see that the joint Bayesian method
provides estimates of 71, . . ., 76 that are all shrunken towards 0.35 (the average value of v, . .., 76),
which is a consequence of estimating these quantities with feedback from an outcome model that
imposes restrictions on the covariate-treatment and covariate-outcome relationships. This is in
stark contrast to the estimates from the sequential methods that are not informed by the outcome

and accurately reflect a different v, for £ = 1,2,...,6. We also see that these vast discrepancies
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between estimates of v lead to estimates of 3 that are very different, with the joint Bayesian
estimates performing very poorly. In a setting where the covariate-treatment/covariate-outcome
relationship is different for every covariate, joint Bayesian estimation with § = 0 cannot ade-

quately recover the treatment effect, even though sequential methods perform well.

We reanalyze the data simulated in Scenario 3 with § # 0 and C* = (C4, . .., Cg), referring to this
analysis as Scenario 3*. Results for these analyses are summarized in Figure 1.3b, which shows
that the additional covariate adjustment in the outcome model prevents feedback from distorting
estimates of v, leading to estimates of v from the joint Bayesian method that agree, on average,
with those from the sequential procedures and the true treatment assignment mechanism. As a
consequence, h(vy, C)) maintains the balancing score property, and Bayesian estimates of 3 agree

very closely with estimates from the sequential procedure and with the true parameter value.
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Figure 1.3: Scenarios 3 and 3" with (y0,71,7%2,73:7,7%.7%) = (0.0,0.1,0.2,0.3,0.4,0.5,0.6), and

(v, 01, a2, g, g, a5, 06) = (0.0,0.6,0.5,0.4,0.3,0.2,0.1): boxplots of estimates of v and 3 from the sequen-
tial frequentist, joint Bayesian and sequential Bayesian analyses of 1000 replicated data sets. Horizontal
dotted lines are at the true parameter values.
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Table 1.1 numerically summarizes the performance of each method in terms of estimates of 3. This
table also summarizes bias from an unadjusted analysis, which is high in all scenarios. The joint
Bayesian analyses of scenarios containing different covariate-outcome and covariate-treatment
relationships that do not augment PS adjustment (Scenarios 2 and 3) produce estimates of 8 with
substantial bias, as compared to the sequential approaches and to the Gold Standard analysis.

Joint Bayesian estimates for these scenarios also exhibit low coverage probabilities.

For Scenarios 1, 21, and 3* all methods performed comparably. It is interesting to note that, for
the scenarios where one covariate exhibits a different covariate-treatment relationship (2 and 27),
augmenting with the additional covariate actually resulted in slightly more bias for the sequential
Bayesian method. The sequential Bayesian method also has conservative confidence interval
coverage, with coverage at least 98% in all scenarios. The interval widths are nearly twice as wide
as those from either the traditional sequential or joint Bayesian methods as the posterior standard

deviation seems to overestimate the standard deviation of the posterior mean. (results not shown).

It is also important to note that the detrimental effects of feedback on causal estimates when § = 0
(as displayed in Scenarios 2 and 3) is a feature of the dimension-reduced feedback explicated in
Section 1.4.2 and that this phenomenon cannot be remedied by increasingly flexible choices for
h(7,C). To illustrate this point, Appendix A.1.1 conducts a simulation study paralleling that in
Scenarios 3 and 3%, but specifying a flexible spline basis for h(v, C). The results of this simulation
are the same as those presented here; estimates of 5 are biased when ¢ = 0, but not when 6 # 0, the

latter case being analogous to the penalized spline of propensity prediction method of Little (2011).

1.6 Model Misspecification

We have shown that model feedback has the potential to distort effect estimates when doing joint

Bayesian PS estimation. One recommendation to overcome this is when conducting joint Bayesian
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estimation with models for the PS and outcome stage augment the PS adjustment with adjustment
for every covariate that appears in the PS model, a strategy akin to those previously developed
to yield ‘doubly robust” estimators that will estimate causal effects when either the PS model or
the model for additional adjustment is correctly specified (Bang and Robins, 2005, Little, 2011). In
this section, we use simulations to demonstrate that if we correctly specify the functional form
of the covariate adjustment in the outcome model, we will get unbiased effect estimates, even if
we misspecify the PS model. Likewise, if we misspecify the covariate adjustment in the outcome
model but have the PS model correctly specified, we also get unbiased effect estimates. This is
true, regardless of the method used (joint Bayesian, sequential frequentist or sequential Bayesian)

but only if we include all C for residual confounding adjustment.

1.6.1 Misspecification of the Outcome Model

First, let’s consider the case where the PS model is correctly specified but the residual covariate
adjustment in the outcome model does not reflect the true data generating mechanism. We gener-
ate data from the situation where the covariate-treatment/covariate-outcome relationship are not
simple rescalings - in other words, the residual confounding is necessary for the PS to maintain
the balancing score property when using the joint Bayesian method. Specifically, after generating

C as described in section 1.5, we generate X and Y from Bernoulli distributions with probabilities

as follows
C; C;
P(XZ — 1|Cl) — eXp(’YO +’71 71 + + Y6 ’Lﬁ)
1+exp(yo+mCin + ...+ 7%Ci6)
X; 1 ; 1 ;
P(Y; = 11X,,C) = 5 exp(ag + AX; + ailog|Ca| + ... + aglog [Cig)
+ exp(ag + BX; + ag log|Cit| + . .. + aglog|Cisl)

where (v0,71,72:73,74,75,%) = (0.0,0.1,0.2,0.3,0.4,0.5,0.6), (o, 1, q0,as, aq,a5,06) =

(0.0,0.6,0.5,0.4,0.3,0.2,0.1) and 3 = 0.
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We analyzed the simulated data with § # 0 and Ct = (Ci,...,Cs) using the joint Bayesian,
sequential Bayesian and sequential frequentist approaches. Results for these analyses are summa-
rized in Figure 1.4. We see that even though misspecified, the additional covariate adjustment in
the outcome model still changes the nature of the feedback such that it does not distort estimates
of , leading to joint Bayesian estimates of -y that agree, on average, with those from the sequential
procedures and the true treatment assignment mechanism. As a consequence, h(y, C') maintains
the balancing score property, and joint Bayesian estimates of 3 agree very closely with estimates
from the sequential procedures and with the true parameter value. With a correctly specified PS
model, we expect X L C1,...,Cp|PS. It was the restriction on the covariate-treatment/covariate-
outcome relationship imposed by fitting the joint likelihood that distorted estimates of v, the PS
and ultimately 8. Adjusting for these covariates, even if the functional form of the adjustment
does not reflect the true data generating mechanism, still allows estimation of + in accordance

with the treatment assignment mechanism, thus maintaining the balancing score property.
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Figure 1.4: Misspecified outcome model: boxplots of estimates of v and § from the sequential frequentist,
joint Bayesian and sequential Bayesian analysis of 1000 replicated data sets. The dashed line represents the
true parameter values.
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1.6.2 Misspecification of the Propensity Score Model

Now, let’s consider the case where the additional covariate adjustment in the outcome model
reflects the true data generating mechanism but the PS model is incorrectly specified. In addition
to the PS model misspecification, v # gil ; in other words, even if the functional form was correctly
specified, we would still need additional covariate adjustment in the outcome model for i(~, C) to
maintain the balancing score property in the joint Bayesian method. Specifically, after generating

C as described in section 1.5, we generate X and Y from Bernoulli distributions with probabilities

as follows
1 ; 1 ;
P(Xz — I‘CZ) — exp('yO +’Yl Og |C’Ll’ + + ’Y6 Og ‘CZGD
1+ exp(yo + v1log|Cit| + ... + 6 1og |Cig|)
X; C; C;
P(E _ 1’X7,,074) _ eXp(a0+/8 ’L+a1 ’Ll+ +O[6 16)
14 eXp(Ctg +B8X; + a1 Cip + ...+ 06601'6)
where (v0,71,72:73,74,75,%) = (0.0,0.1,0.2,0.3,0.4,0.5,0.6), (o, 1, q0,as, aq,a5,06) =

(0.0,0.6,0.5,0.4,0.3,0.2,0.1) and 3 = 0.

We analyzed the simulated data with § # 0 and C* = (C,...,Cs) using the joint Bayesian,
sequential Bayesian and sequential frequentist approaches. Results for these analyses are sum-
marized in Figure 1.5. We see that all three methods closely agree as to their estimates of 5. In
this case, the outcome model, minus (7, C), is the true, ‘gold standard” model. Adding in the

misstated PS is essentially just adding in random noise and does not bias our estimates of .

1.7 Comparing the Effectiveness of Cardiovascular Treatments

Carotid artery stenting (CAS) has recently emerged as a promising non-inferior alternative to

carotid endarterectomy (CEA) for treatment of carotid artery disease, which is a primary cause
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Figure 1.5: Misspecified PS model: boxplots of estimates of v and 3 from the sequential frequentist, joint
Bayesian and sequential Bayesian analysis of 1000 replicated data sets. The dashed line represents the true
value of 3. While the estimates of v have no real meaning in this setting, we see that, on average, we
estimate 8 without bias.

of stroke. To compare CEA (X = 1) vs. CAS (X = 0) for preventing death within one year of
hospital admission (Y = 1 for death, 0 otherwise), we use hospital impatient data from 123,286
Medicare beneficiaries admitted to the hospital with a primary diagnosis of stroke during 2006
or 2007, as determined by the diagnosis codes found in Lichtman et al. (2009). An unadjusted
comparison between 1-year mortality in CEA vs. CAS patients yields an odds ratio for death
of 0.59 indicating worse outcomes with CAS, but this comparison is thought to be confounded
by patient characteristics that help determine treatment choice. In particular, CAS patients
generally have a higher baseline risk profile, as evident from Table 1.2, which summarizes patient
characteristics in the CEA and CAS treatment groups. In pursuit of a causal effect estimate, we
conduct a PS analysis that adjusts for the 25 variables in Table 1.2, including patient ethnicity, age,
and gender, as well as baseline risk factors consisting of the Hierarchical Condition Categories

(HCC) (Pope et al., 2004) for current or previous presence of comorbidities.
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We conduct the analysis using logistic regression in both the PS and the outcome stages, with
h(7, C) specifying PS subclasses based on quintiles of the logit(PS). We checked that the entire
range of PS values was represented in both treatment groups (i.e., that there was sufficient
overlap) using maximum likelihood estimates of . For the Bayesian methods, the quintiles for
defining PS subclasses were recalculated for every update of the PS. In light of the discussion
in Sections 1.4 and 1.5, we consider an outcome model with § # 0 and C* = C, implying
residual adjustment for every covariate within PS subclass. We estimate the treatment effect
using the joint Bayesian analysis of Section 1.4, the sequential Bayesian analysis of Section
1.4.4 as well as with a standard sequential analysis. Prior distributions for all parameters were
considered Normal with mean 0 and variance 10'°. Three MCMC chains were run for 100,000 it-

erations, discarding the first 25,000 as burn in and saving every 20" sample for posterior inference.

1.7.1 Results

From the joint Bayesian analysis, the posterior mean of the conditional causal odds ratio (OR),
ef, was 0.68, with a 95% posterior probability interval (0.61, 0.77), indicating a decreased odds
of death within 1 year of hospital admission for CEA patients as compared to CAS patients. The
analogous traditional sequential analysis produced the same point estimate and 95% confidence
interval while the sequential Bayesian analysis produced the same point estimate but the wider
interval (0.58, 0.80). Thus, our analysis fails to provide evidence that CAS is a non-inferior
alternative to CEA for treating carotid artery disease in stroke patients, with increased conditional
odds of death within 1-year of hospital admission among patients treated with CAS. As in our

simulation study, all three analyses yield virtually identical results when § # 0.

We also note that for the Bayesian analyses MCMC performance was suspect for many parameters
in the PS model, although performance was adequate for all parameters in the outcome model,

including 3. We revisit this point in the discussion.
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Table 1.2: Baseline characteristics (% experiencing unless noted) and 1-year mortality rate for CAS and CEA
patients.

CAS (n=4038) CEA (n=119248)

Age (mean) 75.3 75.1
White 92.3 93.8
Male 62.1 57.3
Prior Myocardial Infarction 5.1 2.1
Unstable Angina 5.2 25
Chronic Atherosclerosis 64.3 48.6
Respiratory Failure 3.3 1.9
Hypertension 75.3 78.8
Prior Stroke 7.5 6.7
Cerebrovascular Disease (non stroke) 26.7 17.1
Renal Failure 10.5 6
COorD 26.1 224
Pneumonia 54 3.6
Diabetes 35.3 32.3
Malnutrition 1.1 0.7
Dementia 3.6 3.1
Functional Disability 5.1 3.8
Peripheral Vascular Disease 15.2 9
Trauma in the Past Year 4 3.4
Major Psychiatric Disorder 1 1
Anemia 15.5 12.3
Depression 3.9 4.7
Parkinsons/Huntingtons 1.1 0.8
Asthma 1.7 2.6
Cancer 47 42
Death within 1 year of Admission 9.3 5.6
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1.8 Discussion

Through a detailed assessment of model feedback, we have advanced existing research on
Bayesian PS estimation. Using a simple example and simulated illustrations, we have shown
that a joint likelihood for a PS model and an outcome model that adjusts for only the PS cannot
uncover treatment effects in general settings. The key concept is that outcome models that adjust
for the PS imply a characterization of the covariate-outcome response surface (conditional on X),
and feedback from this outcome model can distort estimates from the PS model and compromise
the desirable features of PS adjustment. This casts substantial doubt on the validity of using joint
Bayesian PS estimation for an outcome model that adjusts for only the PS, and represents a vital

feature that has been previously overlooked in the literature on Bayesian PS estimation.

One constructive approach that we explore here augments PS adjustment with additional covari-
ate adjustment, which has been previously recommended in the PS literature (Rubin, 1985, Stuart,
2010). We have shown that joint Bayesian estimation using this strategy can accurately estimate
the treatment effect in settings where adjustment for only the PS fails. Our recommendation is
that, when conducting joint Bayesian estimation with models for the PS and outcome stage, PS
adjustment should be augmented with adjustment for every covariate that appears in the PS
model. Although this strategy could still provide substantial benefit over methods for direct
covariate adjustment that do not use the PS (Rubin, 1985), adjusting for each individual covariate
within PS subclass may be unappealing to researchers drawn to PS methods precisely because of
their ability to provide reliable causal estimates without specifying every covariate in an outcome
model. If, when specifying a model for the PS and a model for the outcome, researchers wish
not to augment PS adjustment with adjustment for every covariate, then we recommend against

using the type of joint Bayesian estimation presented here.

In that situation a researcher may use an approximately Bayesian approach that ‘cuts the

feedback’ from the outcome model to the PS model. This method has an advantage in that it
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treats the PS as the unknown quantity that it is and propagates uncertainty from its estimation
into the outcome model. Additionally, this method fits into the broader literature on Bayesian
methodology and may be incorporated into other methods that seek to use Bayesian approach
to propensity scores, for example, methods to adjust for missing confounders using propensity

scores (McCandless et al., 2012).

In comparison with traditional sequential procedures, Bayesian PS estimation implies a signif-
icant computational burden. In the analysis of the Medicare data, achieving adequate MCMC
performance and chain mixing was challenging for parameters in the PS model - which can be

considered nuisance parameters in a PS analysis - particularly for the joint Bayesian method.

Our goal for this work is to shed light on the subtlety of model feedback when conducting joint
Bayesian PS estimation when a model is used to conduct outcome comparisons adjusted for the
PS. To achieve this goal, we made several simplifying assumptions. In particular, we specified an
outcome model that stratified on PS quintiles, but assumed the same treatment effect across all
PS subclasses. In analyzing the Medicare stroke data, we investigated the use of additional PS
subclasses and the inclusion of PS-by-treatment interaction terms in (1.2) to estimate a different
treatment effect in each subclass, but this did not qualitatively alter our results. Other interactions
or more complicated modeling strategies could be implemented in either the PS stage or the
outcome stage, but the salient features of model feedback would persist, as shown by Zigler et al.
(2013). We also note that the entire joint Bayesian estimation paradigm relies on a likelihood
based approach to both a PS model and an outcome model, and the issues addressed in this
article have no clear analog to PS methods that exchange likelihood-based inference for matching
or weighting in the outcome stage. Furthermore, the entirety of this article is predicated on the
assumption of ignorable treatment assignment. While this assumption held by design in our
simulation study, our results regarding the comparative effectiveness of CEA vs. CAS should

be viewed in light of the prospect of unmeasured confounding, which may be present in our
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example as the Medicare data lacks specific information on condition severity.

Better understanding of model feedback is essential to advance research on Bayesian methodology
for use in problems involving the PS. For example, there has been recent interest in PS estimation
when the set of necessary confounders is an unknown subset of those available for analysis (Wang
et al., 2012, McCandless, 2012, Vansteelandt, 2012). In principle, conducting Bayesian variable se-
lection jointly on the PS and outcome models could ensure that important outcome predictors
are included in the PS model, but our results here show that using model feedback to estimate
coefficients in the PS model could prove detrimental. The sequential Bayesian method explored
here would sacrifice the ability of the outcome to inform which variables to include in the PS. In
another example of joint Bayesian PS estimation, McCandless et al. (2012) use PS ideas to adjust
for confounding using external validation data within a joint Bayesian model, but do not directly
address the role of feedback. Chapter 4 builds on this work by suggesting two approximately
Bayesian approaches that do not allow feedback from the outcome model to the PS model. Inves-
tigation of feedback in these and other settings is an important avenue for future research, and

provides sound motivation for further pursuit of Bayesian PS methods.
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Bayesian Adjustment for Confounding in the Presence of Multiple
Exposures



Abstract

Modern air pollution epidemiology demands a shift to considering the health effects of expo-
sure to multiple pollutants but most epidemiological studies examine health effects associated
with exposure to a single environmental contaminant at a time. For example, let’s assume we
are interested in estimating the effect of simultaneous exposure to ozone and PM; 5 on cardio-
vascular (CVD) hospitalization in an observational study of 413 U.S. counties. We have data on
over 50 measured confounders. There is limited literature that provides clear guidance on how
to select confounders to include in the health effects model when the goal is multiple pollutant
risk estimation. We propose a method to estimate the adverse health effect associated with a si-
multanous change in more than one exposure while addressing uncertainty in the selection of
the confounders. We introduce Bayesian Adjustment for Confounding for Multiple Exposures
(BAC-ME). For the situation with J exposure variables, our approach is based on specifying J + 1
regression models, one for each of the exposure variables and one for the health effects model.
The J regression models have each of the exposure variables as response variables and the set
of measured confounders as predictor variables. We perform Bayesian variable selection on all
models and link them through our specification of prior odds of including a predictor in the out-
come model, given its inclusion in the exposure models. In simulation studies we show that our
method estimates the multi pollutant adverse effect with smaller bias and mean squared error
than traditional Bayesian Model Averaging (BMA) or adaptive LASSO and with improved cover-
age. We then apply BAC-ME, BMA and adaptive LASSO to an epidemiological study of over 14
million medicare enrollees for the study period 2008 to 2010. Using each approach, we estimate
the change in emergency hospital admissions associated with a simultaneous change in long term

exposure to both ozone and PM; 5 adjusted for confounding.

2.1 Introduction

Most epidemiological studies examine health effects associated with exposure to a single envi-

ronmental contaminant at a time. However, humans are exposed to many environmental agents
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at once and therefore epidemiological studies need to change focus to this more realistic setting.
For instance, suppose we are interested in estimating the adverse health effect associated with
the simultaneous exposure to more than one pollutant, say ozone and PM; 5. There may be any
number of confounding factors we would like to account for. For example, in a retrospective
epidemiological study of chronic health effects associated with long term exposure to both ozone
and PM; 5 potential confounders include weather variables, other pollutants (e.g. nitrogen
dioxide, carbon monoxide and sulfur dioxide), geographic region and population characteristics.
It may be impractical, impossible or undesirable to adjust for all possible confounders and yet we
are not certain which are truly important. As the number of exposures included in the analysis for
the estimation of a multi pollutant adverse health effect increases, so does the chance of excluding

an important confounder from a large set of measured covariates.

One challenge with the transition from a single exposure to multiple exposures is the lack of a
formal approach to select which measured confounders should be included in the health effects
model. Standard approaches for selecting confounders in the context of a single exposure will
not be adequate in this context; the set of confounders of an adverse health effect associated
with simultaneous exposure to more than one pollutant cannot be fully characterized by the
confounders of the effect of each individual pollutant separately. The key task is to identify

confounders that are jointly associated with multiple exposures and the outcome.

Confounding adjustment in the epidemiological literature frequently relies on regression adjust-
ment, and many air pollution studies have used a regression framework to identify the most
toxic of a large set of exposures after adjustment for a pre-specified set of measured confounders
(Robins et al., 1992, Greenland, 1993, Vedal and Kaufman, 2011, Dominici et al., 2010). In this paper
we consider a different problem. Researchers are often confronted with choices regarding which
of the available covariates should be included for confounding adjustment, especially when the
number of variables is large relative to the sample size. In practice, they select a subset a priori

based on some selection criteria: ‘subject matter expert’” knowledge, availability of data, etc.
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Whatever method is used, there is always uncertainty surrounding that choice. Here we consider
the question of which confounders to include in the health effects model (also called outcome
model) when interest lies in multi pollutant risk estimation. In the single exposure setting, BAC
(Wang et al., 2012) has been recently introduced as a method to select confounders. BAC uses
a Bayesian approach to model averaging to estimate the health effect associated with exposure
to a single pollutant while acknowledging the uncertainty in the confounder selection. To our
knowledge, the literature is lacking with respect to methods for confounding adjustment for the

situation with multiple exposures.

In this paper, we will make two contributions. First, we will clarify the difference as to what
constitutes a true confounder in multiple exposure settings versus single exposure settings. A true
confounder in the multiple exposure (ME) setting is any covariate that confounds the relationship
between simultaneous exposure to multiple pollutants and the outcome of interest. This could be
a covariate that is marginally associated with one or more exposures - and, hence, would also be
a confounder in the single exposure (SE) setting - or one that is jointly associated with multiple
exposures (and might not be a confounder in the SE setting). Throughout this paper, when we
refer to a true confounder we are referring to a true confounder in the ME setting unless otherwise
specified. Second, we will develop a statistical framework to adjust for confounding in the
presence of multiple exposures while accounting for uncertainty in the confounding adjustment.
We introduce BAC for multiple exposures (BAC-ME) to extend this framework where selection
of confounders is based on simultaneous exposure to multiple pollutants. Our method will allow
us to select a subset of covariates to include to control for confounding in a linear regression
model while protecting against the possibility of eliminating a true confounder. This will also
help identify true confounders for future research efforts. We will show through simulation
studies that it is of paramount importance to include all confounders in the outcome model
and that excluding only one true confounder could lead to substantial bias in estimation of the
multi pollutant adverse health effect. In section 2.2 we describe our method and present a simple

illustrative example; in section 2.3 we present a simulation study that shows the advantage of
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BAC-ME over traditional methods such as BMA and LASSO; in section 2.4 we apply our method
to a retrospective epidemiological study aimed at estimating the multi pollutant adverse effect
on cardiovascular (CVD) hospitalization associated with a simultaneous change in ozone and
PMs; 5, controlling for weather data and population level characteristics; finally, in section 3.4 we

conclude with a discussion.

2.2 Methods

2.2.1 Concept

Suppose we have multiple exposures, Xi,..., X, a continuous outcome, Y, and M potential
measured confounders (categorical and/or continuous), C' = (i, ...Cys, and we want to estimate
the effect of a simultaneous change in more than one exposure on the outcome. We will specifically
examine the case with two exposures (J = 2) although the proposed framework can be easily
generalized to more than two exposures. Our quantity of scientific interest is multi pollutant risk,
defined here as the effect on cardiovascular outcome (Y') associated with the simultaneous change
in exposure to two air pollutants (X; and X5»), adjusted for measured confounding. For J=2, we

define the parameter of interest as:
Am<5) = A(xl,x2)<517 52) = E[Y’Xl =x + 51, Xo =29 + (52] — E[Y‘Xl =1x1,X9 = xg] (21)

where 0; and J; are simultaneous changes in exposure 1 and exposure 2, respectively and z;
and x, are the current values of these exposures. For example, 21 and x5 could be the three year
nationwide average level of PM, 5 and ozone and 4; and d> a 10 ug/ m? increase in PMs 5 and 10

ppm increase in ozone simultaneously.
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2.2.2 Models

We specify three equations simultaneously: one for each exposure variable and one for the out-

come.
M
X1 =ny" + Z A et Crni + €11 (2.2)
m=1
M
Xoi = 0% + 4 X1+ Y a2 Coni + €2 (2.3)
m=1
M
Yo =n) + BuXui + BoXoi + BsX1iXoi + Dy Coni + €] (2.4)
m=1
where:
i=1,.,N

X1 eXe v ild N(0,0%,), N(0,0%,), N(0,0% ) respectively

The parameters ot € {0,1}M a*2 ¢ {0,1}M,a¥ € {0,1}M are unknown vectors of
indicator variables denoting whether or not a potential confounder is included in the re-
gression model; aX! = 1 if Cy, is included in (2.2), ax? = 1 if C,, is included in (2.3)
and o), = 1 if Cp, is included in (2.4). In this setting, our scientific quantity of interest is
A(xlm)(él, d2) = 6151 + 0202 + (6122 + d2x1 + §162)B3. Under the model formulation represented
also associated with Y. This type of association can be manifested many different ways. The most
obvious way is if Cy, is associated with X; and Y and/or associated with X, and Y. However,
these associations do not exhaust the possible confounding relationships in the multiple exposure
setting. To conceptualize it is helpful to think of a binary covariate and exposures summarized
in contingency tables, for example where the 2x2 contingency table for (X, C),) is such that
p(C|X1) = p(C) and likewise the contingency table for (X3, C,,) is such that p(C|X3) = p(C)
but the 4x2 contingency table for ({ X1, X2}, Cy,) is such that p(C| X7, X2) # p(C). For a specific

example, see Appendix A.2.1. Such a situation is evident in the data analysis of Section 2.4 where
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there exists covariates that are jointly associated with multiple exposures but not marginally
associated with any single exposure. Throughout we assume that (), is a pre-exposure variable;
that is, we make the strong assumption that none of the (), are intermediate variables that could

be affected by any of the exposure variables.

We are interested in identifying the minimal outcome model; that is, the smallest outcome
model that includes all true confounders and therefore will provide an unbiased estimate of
Agz(d). Adding C,, that are not true confounders into the health effects model will not bias
estimation of A;(d). However, excluding even one of the true confounders yields a biased
estimate. We will denote the minimal model as ) . Our goal is to estimate A,(§) when o is
unknown. Any model, a¥, that contains the minimal model, i.e. a¥ D a%/, will yield a posterior
distribution whose mean is an unbiased estimate of A,(d). The true model will always include
the minimal model, ¥,z 2 «a}, but may also include variables associated with only the

outcome. Our method selects models that contain o} by introducing prior dependence between

aX1 a2 and a¥, ensuring that variables are selected based on joint associations with (X1, X2, ).

2.2.3 Illustrative example

We will introduce our approach with an example to illustrate the danger of excluding even one
of the true confounders when estimating A,(d). Consider the relationship in Figure 2.1. We
have four true confounders (Cy, Ca,C3,C4) and one extraneous covariate C5. The variable C] is
strongly correlated with X, X, and Y; C; is strongly correlated with X; and Y; Cj3 is strongly
correlated with X, and weakly correlated with Y; C4 is weakly correlated with X5 and strongly
correlated with Y and Cj is uncorrelated with both exposures and the outcome. In addition,
the two exposures are moderately correlated with each other. The minimal model guaranteed
to provide an unbiased estimate of A (8) is @) = (1,1,1,1,0). This is also the true model. The
full model, ¥ = (1,1,1,1,1), includes «} , is fully adjusted for confounding and will yield an

unbiased estimate as well. Any model that does not include o is not guaranteed to yield a
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posterior mean that is an unbiased estimate A, (6).

X1 Cl

—> Strongly Correlated

C2

--=-> Weakly Correlated

C3

v

D
ca<_ \‘
T2

Figure 2.1: [llustrative Example

To illustrate we generated 1000 data sets from the following models which reflect the situation

depicted in Figure 2.1:

X1

i

X1 =C1i+ Oy + €
Xpi = 0.3X1; + Cp; + C3i + 0.1Cy; + €2

Y; = X5 + Xoi — 0.5X1;Xo; + Cpi + Coi + 0.1C3; 4+ Cys + €

Throughout the remaining simulations, unless otherwise noted, i = 1,...,1000, X1 X2 Y iid

N(0,1), i 8 N(0,1)

We estimated Ago(1,1) = 51 + B2 + 3 from the ordinary least squares estimates of 3 under
different confounding adjustments. Table 2.1 column 2 shows the average bias in Ag o(1, 1). We see
that excluding C which is strongly associated with both exposures and the outcome, introduces
the most bias. Even the estimate from the model without C3, which is only weakly correlated with
the outcome, is biased. In fact, only o} = a%RUE = (1,1,1,1,0) and &¥ = (1,1,1,1,1) yield

posterior mean estimates which are unbiased for A,(d).
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Table 2.1: Bias, MSE and CI coverage in Ag (1,1)by model. The bias is the average bias arising from the
ordinary least squares fit across simulations.

Model Bias MSE CICoverage
(1,1,1,1,0; True Model) 0.0003 0.0016 0.9520
1,1,1,1,1) 0.0003 0.0016 0.9540
0,1,1,1,0) 0.5661 0.3213 0.0000
(1,0,1,1,0) 0.4989 0.2505 0.0000
(1,1,0,1,0) 0.0352 0.0026 0.8440
(1,1,1,0,0) 0.0715 0.0082 0.7500

2.2.4 Prior specification for Bayesian model-averaged estimates.

When the goal is effect estimation accounting for model uncertainty, it is common to calculate the
posterior distribution of the effect by taking a weighted average over models (Hoeting et al., 1999,
Raftery, 1995):

3" P(AZT ()Y, D)P(a)|D) 2.5)

Where Agy () is the model specific effect from the model oY, P(a¥ | D) is the posterior probability
of (or weight assigned to) a¥’, and D=(X, Y, C). Equation (2.5) can be decomposed into two parts:

the sum over models which include of and the sum over the remaining models. i.e.,

S P 4)aY, D)P@' D)+ Y P(AY (8)la¥, D)P(aY|D) (2.6)

a¥Dal a¥2al

When oY contains o}, the posterior mean of P(A2 (8)|aY, D) is an unbiased estimate of Ay (d).
If we have a method that assigns posterior weights only to the models in the first term of (2.6), we
are averaging across models that yield unbiased estimates of A;(d). By contrast, any method that
assigns high weights to the models in the second term of (2.6) is averaging across models that are
unlikely to yield an unbiased estimate of A,(d). Note that this quantity is defined based solely
on quantities in (2.4) but (2.2) and (2.3) inform estimation of a¥ in (2.4). Our goal is to specify a

prior distribution on a¥ |aX1, aX? that assigns the posterior mass mostly to models that contain
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o} . This will ensure averaging across unbiased estimates of Az ().

BAC-ME jointly considers both exposure models, (2.2) and (2.3), and the outcome model, (2.4). To
assign more posterior mass to the health effects models that contain ), we assign prior probabil-
ities that ensure variables related to either exposure variable are included in the outcome model.
Specifically, first we specify a prior distribution on o |a*!, a2 by defining a dependence param-
eter, w, that represents the prior odds of including a covariate in the outcome model when it is in
either (or both) exposure models. These priors can be extremely general — for instance different

dependence parameters for each exposure and even each confounder (see Appendix A.2.2 for a

more general formulation) — but for simplicity we will investigate the case where:

Play =1aft =1,a52 =1)  P(a), = 1ot = 1,002 =0)  Pla), =1an! = 0,052 =1)
= = = W
P =0lap! =1,an2 =1)  P(aY =0lan! =1,am2 =0) P(a), = 0lam' =0, = 1)
(2.7)
Plak = ot =002 =0) _ o8
P(aY, = 0lap' = 0,am> = 0) '

In the case of a single exposure, Wang et al. (2012) note that w = oo is usually conservative and
provides unbiased results. Setting w = co makes the default formulation that if C,, is associated
with (X1, X3) then C,, is forced into the outcome model. If C, is also associated with Y, then C,
is a confounder and must be in the outcome model to guarantee an unbiased estimate of Az(9).
If Cy, is not associated with Y, we may loose efficiency in our estimation but we still obtain an
unbiased estimate of A (d). While this method is flexible enough to alter w to any value, setting
w = oo maximizes our chance of selecting any variable associated with exposure(s) into the
outcome model. For all results presented here, we set w = co. See Appendix A.2.2 for the prior
distribution of aX*|a¥, aX2|aY and the joint, marginal and conditional probabilities implied by

the odds ratios in (2.7) and (2.8).
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Our goal is to estimate the posterior distribution of (oY, aX1, a2, A(zy,22)(01,62)). We assume

the following priors for other model parameters:

(7, an)Kanng(j) ~ N(uoaxj,ag(jgf)QEOan),j =12
(ﬁlv 627637 ny)’(ay7 U%/) ~ N(IJ‘O(XY7 U%QSQEOQY)
1 1 1

Pt g Gamma(v/2,v\/2)
X1 9%, 9y

where () /2) is the rate parameter of the Gamma distribution (i.e. E[U%] =1/)) and
X1
Vs Ay @y oo X s oo s 200,55 » and X,y are hyperparameters that are specified as recommended by

Raftery et al. (1997)

We used an MCMC algorithm to draw posterior samples of (a*!, X2, ¥ v, 3). We used the
MC3 method (Madigan et al., 1995) to sample from the first three full conditionals. Derivation of

the posterior distributions for all parameters may be found in Appendix A.2.3.

2.3 Simulations Studies

In section 2.3.1, in the simple setting of three true confounders, ten variables associated with
outcome only and 30 extraneous covariates, we will show the reduction in bias in estimation
of Az(d) that BAC-ME provides over methods that select variables based solely on their ability
to predict Y; in section 2.3.2 we will simulate data sets from a more complex scenario: 20

confounders, 10 variables associated with outcome only and 30 extraneous variables.

Table 2.2: Comparative Methods

Method | Description

BAC-ME | Bayesian Adjustment for Confounding - Multiple Exposures

FBMA Forced Bayesian Model Averaging - Exposures are forced into the model
NLASSO | Not-forced Adaptive Least Absolute Shrinkage and Selection Operator - Ex-
posures are allowed to enter or leave the model just as confounders
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With a lack of methods designed specifically for confounding adjustment in the presence of
multiple exposures, much less that account for uncertainty in that confounding adjustment,
we chose methods that have traditionally been used for model selection. LASSO and adaptive
LASSO are common methods for simultaneous estimation and variable selection (Zou, 2006).
BMA is a standard Bayesian method for model selection. BMA also goes a step further and has
been proposed as a method to account for uncertainty in confounding adjustment (Hoeting et al.,
1999, Raftery, 1995). The specific methods we explored are detailed in Table 2.2. Both BMA and
adaptive LASSO perform variable selection on only the health effects model (equation (2.4)).
These methods all choose a model based on its ability to predict Y and not on its ability to estimate
the multi pollutant adverse health effect of a change in X; and X3 on Y properly adjusted for
confounding. Note that the last two columns of Table 2.3 list model weights for FBMA and
NLASSO for the datasets in section 2.2.3. Both FBMA and NLASSO assign the most weight to
model (1,1,0,1,0), which does not include aOY. FBMA only selected a model which contained aOY
30.3% of the time and NLASSO only 0.1% of the time. These methods tended to select outcome
models that do not include C3 because this variable is only weakly associated with Y but strongly
associated with an exposure. In contrast, BAC-ME, which simultaneously fits both exposure

models and the outcome model, always selected a model containing o} .

Table 2.3: Bias by model and proportion of time that model is selected by method. The bias is the average
bias arising from the ordinary least squares fit across simulations.The weight for BAC-ME and FBMA is the
posterior probability of ¥ The weight for NLASSO is the proportion of time that that model was selected.
FBMA used a uniform prior on a¥'. BAC-ME used the priors defined by (2.7) - (2.8) with w = oc.

BAC-ME FBMA NLASSO

Model Bias(Ago(1,1)) weight weight weight
(1,1,1,1,0; True Model) 0.0003 0.975 0.296 0.001
(1,1,1,1,1) 0.0003 0.025 0.007 0.000
(0,1,1,1,0) 0.5661 0.000 0.000 0.000
(1,0,1,1,0) 0.4989 0.000 0.000 0.000
(1,1,0,1,0) 0.0352 0.000 0.681 0.999
(1,1,1,0,0) 0.0715 0.000 0.000 0.000
Includesed 1 0303 0001
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2.3.1 Bias by degree of confounding

This set of simulations will explore bias as a function of the degree of confounding across methods.
This will demonstrate the settings in which BAC-ME has the largest advantage over BMA and
adaptive LASSO. For these simulations we have one confounder associated with both exposures
(Ch), one confounder of X; only (C>), one confounder of X, only (C3), ten variables associated
with outcome (Y) only and 30 extraneous covariates — variables not associated with either of the

exposures nor the outcome — as noted below.

E[Xl] =C1+ 0y

E[Xs] = 0.3X; + Cy +132Cs
1
E[Y] = 0.2X; +0.2X5 4+ 01X, X3 + Cy + Cy + nY Cs + i C;

i=4
We vary the true coefficients, 732 and 7}, on a grid from 0.1 to 1 to assess the bias we see in
different methods under different strengths of confounding for the relationship between X, and
Y. For each combination of 752 and 7} we generated 100 data sets with a sample size of 500 each.
The heat maps below demonstrate that BAC-ME provides unbiased estimates for a much larger
range of true coefficients. Figure 2.2 shows the bias of BAC-ME and FBMA. Darker colors indicate
more bias. If both coefficients are relatively small, little bias results from excluding them in the
outcome model. If ) is large, both methods will tend to select Cj into the outcome model and
will yield an unbiased estimate. However, when 73 2 is large and 7} is small, FBMA yields biased

estimates.

A figure of the comparative bias of BAC-ME and NLASSO would show that regardless of the
values of 732 and 7}, NLASSO is more biased than BAC-ME. Comparisons as a function of CI

coverage rather than bias are nearly identical.
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Figure 2.2: Heat maps of bias by strength of confounding. Darker shades indicate more bias.

2.3.2 More complex simulations

For the final set of simulations we will present a more complex scenario with 20 confounders —
(Cq, ..., Cs) associated with both X; and X, (Cs, ..., C10) associated with X; only and (C11, ..., C20)
associated with X5 only — 10 variables associated with outcome only and 30 extraneous variables.
We will show that BAC-ME results in significantly less bias than FBMA or NLASSO. We generated

data from the following models:

5 10
EXi]=) Ci+Y ¢
i=1 1=6

5 15 20
E[Xo] =03X1+ ) Ci+ > Ci+ Y 0.1C;
=1

=11 =16
5 10 15 20 30
E[Y]=02X14+02X5+01X1Xo+ Y Ci+ > Ci+ > 01C;i+ > Ci+ > Ci
i=1 1=6 =11 =16 =21

Table 2.4 summarizes results from these simulations with respect to Ag o(1,1). We see that BAC-

ME outperforms FBMA and NLASSO with respect to bias, MSE and CI coverage with FBMA and
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NLASSO having more than ten times the bias of BAC-ME. We can see the reason from columns
two and three. The second column is the percent of time the method chose a model that included
the minimal model; the third column shows the percent of time the method chose the true model.
Only our method picks models which include the minimal model 100% of the time. FBMA never
selects models which include the minimal model and NLASSO does so only 2% of the time. This
is not surprising. Exposure 2 (X3) had confounders that were only weakly associated with the
outcome but strongly associated with the exposure. FBMA and NLASSO have no mechanism
by which to identify these confounders, they are typically not selected into the model, and bias
results.

Table 2.4: Results for Ago(1,1) for the simulation in Section 2.3.2. Incl. Min is the proportion of time the
method selected a model that contained the minimal model. True is the proportion of time the method

selected the true model. Bias is the difference in the true value of Ag(1,1) and Ago(1,1) where Ago(1,1)
is the average posterior mean for BAC-ME and FBMA and the average estimate for NLASSO.

Method Incl. Min True Bias SE  MSE C(ICoverage

BAC-ME 1.00 043 0.0034 0.0351 0.0012 0.9800
FBMA 0.00 0.00 0.0574 0.0306 0.0042 0.6400
NLASSO 0.02 0.02 -0.0615 0.0566 0.0070 0.9100

2.4 Data Analysis

In this section, we apply BAC-ME to a retrospective epidemiological study of over 14 million
medicare enrollees, weather, pollution and demographic data. The data includes county level
characteristics for 413 counties throughout the US for the period 2008-2010. These include rate of
cardiovascular (CVD) hospital admissions, county level traits, and temperature and dew point
averages and standard deviations, for a total of 57 potential confounders. Specific details on
the data set may be found in Appendix A.2.4. The goal is to estimate the change in the rate of
emergency hospitalizations for CVD associated with a simultaneous increase of one interquartile
range in both ozone and PMs 5 while accounting for weather, demographics (age, race and
gender) and population level characteristics (e.g. proportion who are overweight) from the U.S.

Census and the CDC’s Behavioral Risk Factor Surveillance System. The hospitalization rate is
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recorded separately for each group (gender and race).

We conducted all analyses described both with and without an interaction term between ozone
and PMj; 5 in the outcome model. No analysis provided evidence of a nonzero interaction between
exposures, so we present results for the models without the interaction. To start we considered a

full model with all available covariates.

M
X X1, X X
Os3i =my ' + g A N O + €1

m=1

M
PMss; =g + 703 + + Z XX Cy + €

m=1

M
Y; =ny + B10s; + BaPMa s + Z ad e Cmi + € (2.9)

m=1

CVD
i
Heart Rhythm Disturbances, Ischemic Heart Disease or Peripheral Vascular Disease and NV; is the

Y, =

where CVD is total number of cardiovascular admissions, defined as Heart Failure,

total person-years at risk in county i from 2008-2010. Based on preliminary analysis, the use of a
linear model for the outcome Y; is reasonable. Figures 2.3c and 2.3d show the average levels of
ozone and PMj 5 by county for the 413 counties in our data; Figure 2.3e shows the rate of CVD
admissions for the same 413 counties. The vector C; denotes the set of potential confounders de-
scribed above and given in detail in Appendix A.2.4. We eliminated 10 potential confounders due
to missing data or high correlation (> 0.8) with other confounders; the eliminated confounders

are listed in Appendix A.2.4, Table A.2.

To control for weather, we include seventh degree polynomial terms for temperature and dew
point. For these polynomial terms, a term could not exit the model unless there were no higher
order terms currently in the model. Likewise, a term could not enter the model unless all lower
order terms were already in the model. We assume the residuals are independent and identically

distributed N(0,0?) random variables. We considered five approaches, BAC-ME, BMA forcing
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Average Ozone by County Average PM, 5 by County

(e)

Figure 2.3: (a) shows the average ozone levels by county (ppm) (b) the average PM; 5 levels (ug/m?) (c) the
rate of CVD admissions (admissions per person-year). Levels shown for Hawaii are for Honolulu county.
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exposures into the model, adaptive LASSO not forcing exposures into the model, ordinary least
squares (OLS) and BAC (single exposure). OLS is the least squares estimate from equation (2.9)
with o}, = 1 form = 1,..., M. For BAC (single exposure) we fit two models to the data. The
first is a model with ozone as the exposure and treating PMs 5 as one of the potential measured
confounders. This model is defined by (2.10) - (2.11) and with prior odds ratios given in (2.12)

with w = oo.

M
Ozi = > s Comi + Qg 11Ty 1 P Mo + € (2.10)
m=1
M
Y, = B0Os; + Z a%n%Cmi + a]\Y4+177}\/4+1PM2.5i + 63-/ (2.11)
m=1
P(a), = lay =1 P(a), = 1]ap =
(@ =l =1) _ ~ Play=lla¥=0 _ o)
P(aY, =0la;X =1) P(aY, = 0la;X =0)

Similarly, the second BAC (single exposure) model treats PM3 5 as the exposure and ozone as a
potential measured confounder. As in the simulation studies, results from NLASSO were vastly
different than from the other approaches and we will only show results for the other four methods

here.

Table 2.5 shows the estimated regression coefficients for one inter-quartile range (IQR) increase
in both ozone and PM3 5 per 10,000 person-years at risk. With BAC-ME we estimate coefficients
for each pollution variable that are not statistically significant individually. More specifically, we
found that a simultaneous change in ozone from its 25th to 75th percentile and PM 5 from its 25th
to 75'" percentile is associated with an increase in CVD hospital emergency admissions of 25.6 per
10,000 person years at risk. Notably, the 95% credible interval for A(Ihm) (01, 02) does not contain

zero. FBMA provides point estimates for 3; and (3, that are substantially different than those
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provided by BAC-ME and an estimate for (5; that is statistically significant. For this particular

change, A (01, 62) is very similar for both methods. However, this would not necessarily be

T1,22)
the case if we investigated a different change (i.e. other than one IQR for both pollutants). OLS
provides point estimates that are smaller than the estimates provided by BAC-ME and an estimate
of the multi pollutant effect that is not statistically significant.

Table 2.5: Effect estimates for one IQR increase in ozone (1) and PMa 5 (2) per 10,000 person-years at risk.
A is the expected change in the rate of CVD admissions per 10,000 person years at risk for a change in both

pollutants from their 25" percentiles to their 75" percentiles.
Method Parameter Estimate = SE 95% Interval
BAC-ME B1 (Ozone) 132 73 (-1.0,27.4)
B2 (PMa5) 125 85 (-4.2,29.0)
A 256 11.2 (3.5,47.4)
"BAC(Ozone) 5 104 74 (-39,248)
"BAC(PMs5) B 145 84 (-1.8,30.7)
"FBMA s 170 70 (29,307)
B2 86 79 (-7.0,23.9)
A 256 107  (4.8,46.2)
‘oLs & 94 77 (57,244)
B2 85 85 (-81,25.2)
A 179 114  (-44,40.3)

This data analysis highlights the importance of conducting multi pollutant analysis differently
than single pollutant analysis. Consider the BAC (single exposure) models. The estimates for the
individual effects of a change in ozone or PM; 5 vary somewhat between BAC (single exposure)
models and that defined by (2.9). Figure 2.4 shows the posterior inclusion probability (P(a¥|D))
of each of the 47 potential confounders from the multiple exposure model compared to the the
two single exposure models. Notice that the posterior probabilities of o differ greatly across
models for some covariates and inclusion in model (2.9) is not simply the union of those included
in the two single exposure models. Under the single exposure models we are estimating different
parameters than under the multiple exposure model. In the single exposure models, e.g. (2.11),
we are searching for the covariates that are associated with Y and ozone (or PM;5) but never
for covariates that are associated with Y and with (ozone, PM5 5) jointly. For instance, consider
that the posterior probability of including mean age in outcome model (2.9) is 0.46 whereas the

posterior probabilities of including it in either of the single exposure models are 0. This difference
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is because mean age is not marginally associated with either ozone or PM; 5 but it is associated
with them jointly. To better illustrate the differences it is helpful to think of the exposures as binary
variables. The variable mean age is not associated with ozone marginally. That is, counties with
high ozone have a similar age distribution to that of counties with low ozone. Similarly, mean
age is not associated with PM; 5 marginally. However, counties with both high ozone and low
PM; 5 tend to have a younger medicare population than the rest of the country. That is, mean
age is jointly associated with (ozone, PM; 5) even though it is marginally associated with neither.
The example in Appendix A.2.1 illustrates a similar situation. But just as important, with the BAC
(single exposure) models, there is no clear way to obtain an estimate of the posterior distribution of
the multi pollutant effect, and hence no way to capture the uncertainty surrounding any estimate

of this effect.

2.5 Discussion

A formal method to estimate a multi pollutant adverse health effect fully adjusted for confounding
is currently lacking. BAC-ME gives a means to identify true confounders in a multiple exposure
setting while guarding against the possibility of ignoring variables only weakly associated with
outcome but strongly associated with one or more exposure variables. Importantly, BAC-ME is
designed to detect true confounders on the basis of joint association with multiple exposures,
rather than restrict attention to the subset of confounders that are marginally associated with
at least one exposure. Further, BAC-ME is designed to acknowledge the uncertainty in the
confounder selection, an issue that is exacerbated when there are multiple exposures and when
the vector of available covariates in high-dimensional. Our simulation studies show that in a
variety of settings our method outperforms methods that include potential confounders into the
health effects model based solely on their ability to predict the outcome and ignoring completely

their association with exposures.
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Figure 2.4: Posterior probabilities of including each of the potential confounders in the multiple exposure
health effects model (Equation (2.9)) and in the single exposure models (e.g. Equation (2.11))
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One might be tempted to use existing methods to estimate effects of ozone and PMy 5 separately
but this can only approximate the targeted effect of a simultaneous exposure. An approach that
treats the exposures separately would ignore the potential interaction between the two compo-
nents. Only in the most simple case is the multi pollutant adverse health effect simply the sum
of the individual effects. Additionally, this approach does not control for confounding properly.
Even absent an interaction term, the coefficients from the models E[Y]| = 5;X; + nC and
E[Y] = B2X32+n2C are not generally the same as those from the model E[Y]| = ;X1 + 52 X2 +nC

and cannot be interpreted as the adverse health effect of a simultaneous change in both exposures.

For all simulations presented, we also compared the performance of BMA when exposures were
not forced into the model, adaptive LASSO when they were forced into the model and a two stage
LASSO / OLS procedure. We found that BAC-ME outperformed all other methods examined. We
ran additional simulations varying the covariance structure and sample and effect sizes; results

were consistent with those presented here.

Identifying the set of true confounders may be a goal in and of itself. In large studies, collecting
data on unnecessary confounders wastes time and resources at best and could even be medically
invasive. By identifying the set of true confounders, future studies may be designed more
efficiently: data need not be collected on unnecessary covariates and extra care can be taken to

collect information for a known confounder.

This method may be easily extended to accommodate any order interaction between any terms,
including exposure — confounder interactions. In practice, one must carefully consider which
terms should be included as ‘exposures’ (and, hence, forced into the model) and which should be
treated as ‘confounders’ (and be allowed to enter and leave the model.) This method may also be
easily extended to include any number of exposures, although the number it is wise to include

may be limited by the situation and available data. Additionally, the method may be extended
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to include more complex model formulations such as GLMs, though this would require more

advanced computational techniques.
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Propensity Score Methods for Combining Data Sources



Abstract

Comparative effectiveness research increasingly relies on observational studies based on large ad-
ministrative databases, analysis of which raises several methodological challenges. Additionally,
it is often desirable to combine heterogenous sources of information to estimate effects in an over-
all population while making using of confounders available only for a small subset of the popula-
tion. When these additional, partially measured confounders are high dimensional, correlated or
contain both continuous and categorical variables, traditional approaches such as Bayesian data
augmentation are very challenging. We propose two methods that build on work by McCandless
et al. (2012). Our methods use ‘conditional propensity scores’ to reduce the partially measured
covariates to a scalar quantity, which may then be imputed in the main data. We conduct a sim-
ulation study which shows that in a variety of settings our methods reduce bias over the more
common approaches of adjusting for only the fully measured covariates or complete case analy-

sis.

3.1 Introduction

Comparative effectiveness research (CER) increasingly relies on observational studies based on
large administrative databases. Compared to clinical trials, the analyses of these databases allow
us to study a much larger population and investigate additional questions of interest. However,
analysis of these large and complex administrative databases raises several methodological chal-
lenges and requires the development of new statistical methods. Comparing the effectiveness of
treatment strategies in observational data is challenging both because patients are not randomly
assigned to treatment strategies and because medical providers are not randomly assigned to
quality of care interventions, which introduces the likely possibility that outcome comparisons
are confounded by factors that simultaneously relate to treatment choices, providers, and health

outcomes.
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In addition, it is often desirable to combine heterogeneous sources of information, specifically
information coming from a primary data source (e.g. Medicare) that provides information for
treatments, outcomes, and a limited set of measured confounders on a large number of people
and smaller supplementary data sources (e.g. SEER-Medicare) containing a much richer set
of covariates. These additional covariates may be high dimensional, frequently exceeding the
number of covariates available in the primary data. Additionally, these covariates often contain

important confounders not measured in the primary data.

For example, glioblastoma multiforme (GBM), the most prevalent of the primary brain tumors,
is a devastating disease with high mortality and high medical costs. Our goal is to estimate
the average causal effect in the elderly of a treatment, e.g. major craniotomy, on an outcome of
interest, e.g. 1-year mortality, adjusting for both fully and partially observed covariates. Elderly
GBM patients (65 or older) are characterized by a high rate of associated comorbidities and
are often excluded from clinical trials. GBM is a relatively rare disease and many questions
regarding patient level outcomes can only be addressed with the linkage and analysis of very
large administrative databases. Because a diagnosis of GBM is most commonly made during a
hospitalization, Medicare Part A inpatient claims data captures almost entirely the population of
elderly GBM patients. Medicare Part A contains patient demographic data (age, sex, etc.) and
comorbidity information. The SEER-Medicare (Surveillance, Epidemiology and End Results)
linked database can be used to identify the Medicare enrollees with GBM that are in SEER.
SEER-Medicare provides a wealth of information about important confounders such as cancer
site, stage, and histology for approximately 9.5% of the Part A study population. However,
SEER-Medicare is not a representative sample of the Medicare population; it is taken from 20
regional registries representing only a small part of the Medicare population. Combining the two
data sources would allow us estimate effects in the entire Medicare population with GBM while

making use of the important confounders available only in SEER.
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There are currently a number of challenges to combining such data sources for analysis.
Traditional Bayesian data augmentation methods require specifying the joint distribution of
outcome, treatment and covariates (Little and Rubin, 2002). Often the missing covariates are high
dimensional, correlated, or contain both continuous and dichotomous or categorical variables.
For instance, SEER-Medicare data has nearly 100 potential confounders, including dichotomous,
categorical and continuous variables, many of which are correlated. Correctly specifying the joint
distribution in this setting is nearly impossible. Recently McCandless et al. (2012) suggest a method
to use ‘conditional propensity scores’ to adjust for confounders available only in a supplementary
dataset; this reduces the ¢ dimensional partially measured covariates to a scalar quantity. We

propose two methods that build on their work.

In section 3.2 we will present two approximately Bayesian methods to adjust for missing con-
founders using supplemental data. We assume that the supplemental data is drawn from the
same underlying population but may not be a random sample of the entire population. In section
3.3 we present simulation results that compare our methods to complete case analysis using only
the supplemental data and a ‘naive” analysis that uses only the fully measured covariates. Finally,

in section 3.4 we conclude with a discussion.

3.2 Methods

Suppose we have X, a dichotomous treatment, Y, a dichotomous outcome, C, a set of fully mea-
sured covariates and U, a set of partially measured covariates. We will develop our methods
in the context of Medicare part A (which we will simply called Medicare) and SEER-Medicare
for illustrative purposes although they can clearly be applied to any sources of data meeting our
assumptions. We will denote the primary data as {Y;, X;, C;,U;} for i = 1,...,n and the supple-
mental data as {Y;, X;, C;,U;} for j = n+1,...,n+m. The quantity U; is completely unobserved
in the primary data. Our goal is to estimate the marginal average causal effect (ACE) of a binary

treatment, X, on outcome, Y/, in the Medicare population. For comparison purposes, we will de-
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fine our effect of interest as the risk difference, although we could easily define it as the risk ratio

or odds ratio. More generally, we define the parameter of interest as

A=PY =1X=1)-P(Y =1|X =0)

Throughout, we let the subscript sup indicate observations from the supplemental data set
and and the subscript prim denote observations from the primary data set. Variables with-
out either subscript include the full data. In addition to assuming that the supplemental
data is from the same underlying population as the primary data (the population of inter-
est), we further assume that the missingness depends only on observed data. Specifically,
F(Uprim| Xprims Yprim, Cprim) = f(Usup| Xsup, Ysup, Csup). For instance, our primary data might be
Medicare while our supplemental data could be linked SEER-Medicare, which is taken from the
Medicare population but is not a nationwide sample (NCI, 2013). But, we assume that, conditional
on observed characteristics (i.e. X,Y,C), the SEER-Medicare data is a random sample of the

Medicare population.

We will build on the concept of conditional propensity scores presented by McCandless et al.
(2012). We present two approximately Bayesian methods to adjust for missing confounders using

supplemental data.

3.2.1 Models

Define treatment and outcome models as follows:

9(P(X; = 1|C;,U;)) = Ciy + Uy i=1,...,n+m (3.1)

g(P(Y; =1|X;,C, Z)) = BX; + Cié + h{Z:}¢€ i=1,...,n+m 3.2)
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The parameter § represents the effect of X on Y conditional on C and U, g(-) is a link function
and Z; = U;7 is the propensity score conditional on C (McCandless et al., 2012). The deterministic
function h{Z;} specifies how Z; enters the outcome model, for instance as a linear predictor
or natural cubic spline basis. While not a true propensity score, Z is a balancing quantity
in that it balances the distribution of the missing covariates (U), conditional on the observed
covariates (C), between treated (X = 1) and untreated (X = 0). McCandless et al. (2012) prove
that if there is no unmeasured confounding conditional on (C,U) then there is no unmea-
sured confounding conditional on (C,Z). Therefore, we can estimate the treatment effect by
modeling the conditional distribution of ¥ given (X, C, Z). Note that we will always adjust for

C by including C as a linear term in the regression model although further extensions are possible.

The corresponding complete data likelihood for (3.1) - (3.2) is then:

n+m

P(Y> X‘Cv U7 775’7 67 S) é) = H P(lev XI|CZ> Ui?Va :Ya 67 5) é) (33)

i=1
Complicating matters is the concept of ‘feedback’. In a fully Bayesian model, we would sample
from the joint posterior distribution which can be obtained by combining the complete data like-
lihood in (3.3) with the prior distributions on our model parameters. But note that this likelihood
can be broken into the components corresponding to treatment assignment (e.g. the propensity

score model) and outcome model as follows

P(Y,X|C,U,~,7,8,¢€) = P(X|C,U,~,7) P(Y|X,C,U,7,8,¢,§)

PS Model Outcome Model
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Notice that the parameter 7 appears in both terms in the likelihood. That is, quantities in the
outcome model, specifically Y, influence estimation of 4 and hence, Z. This is the nature of
teedback. Zigler et al. (2013) examine this concept in detail. They found that, in general, this
feedback distorts estimates of the parameters in the treatment (or propensity score) model and
that this distortion adversely impacts the balancing score property of the PS. As a result, Bayesian
propensity score models that use a joint likelihood for a PS model and an outcome model are
not guaranteed to uncover treatment effects. Zigler et al. (2013) show that an outcome model that
adjusts for the PS and also for every covariate included in the PS model can accurately estimate
the treatment effect. However, this additional covariate adjustment is not available in our setting
due to the nature of the missing data. We will instead take the sequential approach examined in

Chapter 1 and develop an approximately Bayesian procedure.

The likelihood in (3.3) can be decomposed into the portion corresponding to the primary data and

the portion corresponding to the supplemental data as follows:

P(Y,X|C,U,~,7,5,& &) = P(Yprim, Xprim|Corims Zprims Y B, €, €)

X P(Yaups Xsup| Csups Usup, Y>> B, €, €)

n n+m
:HP(Y;7X7J‘CMZHFY757‘S7€) H P(Esz’CzaUlvva:y757£7£)
=1 1=n—+1

Similarly, we can decompose (3.1) into (3.4) and (3.6) and (3.2) into (3.5) and (3.7):

9(P(X; =1|Cy, Z;)) = Civ + Zi i=1,...,n  (34)
9(P(Y; = 11X;,Ci, Z;)) = BX; + Ci€ + h{Z;}€ i=1,...,n (3.5
9(P(X; = 1|C, U))) = Ciy + Uiy i=n+1,...,n4+m  (3.6)
g(P(Y; =1|X;,Ci, Z;)) = X; + Ci& + h{UA}E i=n+1,...,n+m (3.7)
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where the Z; in (3.4) and (3.5) is a missing variable. Notice that we could define U;7 in (3.6)
and (3.7) as Z;; we choose to leave it as U;7 to highlight the fact that 4 appears in these models.
We then take a Bayesian data augmentation approach to calculate the posterior distribution of
P(Zprim: 7, 5,&, 3 Y, X,C,Us,p,). We must first specify a model for the distribution of Z. We
assume that Z and C are not independent - an assumption we feel is reasonable in most settings -

and specify f(Z|C, ), where 0 is a parameter vector; i.e. F[Z;|C;] = s(C;, 0).

Both of our proposed methods use Bayesian data augmentation to impute Z in the primary data
but they differ in how they make use of the available data. First, in section 3.2.2 we propose
a sequential Bayesian model (SB) that cuts the feedback between the PSand outcome models.
This method simultaneously imputes the missing Z; in the primary data and estimates the
coefficients in the PS model (3.1). Then, given (Z;) we estimate the coefficients in the outcome
model (3.2). Next, in section 3.2.3 we propose a two-stage approach (TSB). In stage one, Z; is
estimated from (3.1) for all subjects in the supplemental data. In stage two, Z; is imputed for

subjects in the primary data while simultaneously estimating the regression coefficients from (3.2).

The quantity A in the Medicare part A population is fully defined by the regression parameters
in (3.2) and the distributions of C' and Z. Specifically,

A=PY =1X=1)-PY =1|X =0) = //P(Y =1|X =1,C,Z)P(C, Z)dCdZ

- / / P(Y = 1|X = 0,C, Z)P(C, Z)dCdZ
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It is important to note that this quantity is not even estimable using the SEER-Medicare data alone

because it is not a random sample from the Medicare population.

3.2.2 Sequential Bayesian

Here we propose an approximately Bayesian method (SB) that ‘cuts the feedback’ (McCandless

et al., 2010) from the outcome model to the PS model.
1. First we estimate the posterior distribution of (Z,,im,~,7) given the both the primary and
supplemental data, P(Zprim, 7, Y| X, C, Usup)-

2. Next we estimate the posterior distribution of (3, &, £) again given both the primary and
supplemental data and (¥, Zpyim). That is, for every (Zp,im,~,¥) sampled from the posterior
distribution in step 1, we sample (3, &, §) from P(B,&,€|Y, X, C, Usup, Zprim, ).

This ‘cuts the feedback’ from the outcome model to the treatment model in the sense that

information from the outcome model is not used to estimate quantities in the treatment model.

Posterior simulation is accomplished using MCMC. Details may be found in appendix A.3.1.
Given posterior samples of Z,.;,, and all unknown parameters, it is straightforward to estimate

the posterior distribution of A in the Medicare population from the empirical distribution of C.
3.2.3 Two-Stage Approach
Next we take a two-stage approach (TSB).

1. In stage one, we estimate the posterior distribution of the parameters in the PS model (3.1)
using only the supplemental data, P(v,¥|Xsup, Csup, Usup). Given a posterior distribution

of ¥ and U,,, we also have a posterior distribution of Z,,.
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2. In stage two, we estimate the posterior distribution of (Zim, 5, &, 3 ) given Zsup, which is de-

fined as the mean of the posterior distribution of Z,,, that is P(Zpim, 3, &, é Y, X, C, Zsup).

This method is similar to the SB method but differs primarily in two ways. In TSB all parameters
from (3.1) are estimated using the supplemental data only, whereas in SB, the primary data
contributed to estimation of «. Additionally, in TSB the parameters in the outcome model are
estimated using only a point estimate for Z,,,, rather than the entire posterior distribution. TSB is
similar to a traditional PS approach where, once calculated, the estimated PS are treated as a fixed
quantity. TSB does not use the data as fully as SB but retains desirable properties when extended

to other settings, a point we will come back to in section 3.4.

Posterior simulation is again accomplished using MCMC. Details may be found in appendix A.3.2.
Given P(Zyrim, B,§, £ Y, X, C, Zsup) and Zsup, it is again straightforward to estimate A from the

empirical distribution of C.

3.3 Simulation Study

We conducted a simulation study to compare our methods to two commonly used methods:
complete case analysis - that is, analysis in the supplemental data only - and analysis using
only the fully measured covariates, C, which we will call ‘naive’. As previously noted, the
regression coefficient 3 is the effect of treatment, X (e.g. major craniotomy), on outcome, Y (e.g.
1-year risk of death), conditional on C and Z. While complete case analysis analysis allows
us to estimate this effect, we cannot consistently estimate A in the population of interest (e.g.
Medicare enrollees). The ACE in this analysis is instead the effect of X on Y in the population
from which the supplemental data was drawn (e.g. the SEER-Medicare population), which is not
our population of interest. Not surprisingly, if we attempt to estimate the ACE, A, in the entire
population using only the supplemental data we found large bias in most scenarios. Here we will

present results for our methods and the naive analysis.
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3.3.1 Design

We generated 500 datasets from 18 scenarios: where the supplemental data = 10, 50 and 70% of
the total data, where C' and U are weakly and moderately correlated, and where C and U are ap-
proximately equally important in terms of confounding, where C contains ‘stronger” confounders
than U and where U contains stronger confounders than C'. All scenarios had six fully measured
confounders and 10 partially measured confounders. For simplicity, the first column of C'is the
intercept. Total sample size for all scenarios was 2000. These scenarios are laid out in Table 3.1. We
assumed a probit link function for both (3.1) and (3.2). The specific data generating mechanism is
described in Appendix A.3.3. We fix 8 = 0.5 for all scenarios and adjust for Z in the outcome as a
linear covariate. i.e. h{Z} = Z.

Table 3.1: Simulation Scenarios. Breakdown of 18 simulation scenarios. m is the supplemental data sample

size, Confounding represents the relative importance of confounders in C' and U and p¢,u is the correlation
between C and U.

m  Confounding pc,u

1 200 = low
2200 = mod
3 200 U stronger low
4 200 U stronger mod
5 200 Cstronger low
6 200 Cstronger mod
7 1000 = low
8 1000 = mod

9 1000 U stronger low
10 1000 U stronger  mod
11 1000  C'stronger  low
12 1000  Cstronger mod
13 1400 = low
14 1400 = mod
15 1400 U stronger  low
16 1400 U stronger  mod
17 1400 C'stronger low
18 1400 C'stronger mod
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Figure 3.1: Boxplots of A from the sequential Bayesian, two-stage Bayesian and naive analysis of 500 data
sets for all 18 scenarios. The darkest boxes are from the SB analysis, the medium boxes from the TSB analysis
and the light boxes from the naive analysis. Dashed lines indicate the true value of A for each scenario. The
first row of plots are from the scenarios with m=200, the second row m=1000 and the third row m=1400. The
left column of plots are from scenarios where C' and U are weakly correlated, the right columns where they
are moderately correlated. Within each plot, the leftmost three boxes are scenarios where C' and U contain
approximately equally important confounders, the center three boxes are scenarios where U contains the
most important confounders and the right three boxes are scenarios where C' contains the most important
confounders.
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3.3.2 Results

We found that across scenarios our methods never do worse than the naive analysis and in many
cases perform much better. Figure 3.1 shows boxplots of the results of our simulations. Each box
represents the distribution of effect estimates across data sets. Our estimate, A, is the mean of the

posterior distribution of A.

When m=200, or 10% of the sample size (the first row of figure 3.1), we found that there is not
much gain in bias or mean squared error (MSE) by using our methods over simply fitting the
fully measured covariates. All methods performed comparably so there is little to motivate the
extra effort required to use our methods. When m=1000, or 50% of the sample size (the second
row of figure 3.1), we see a significant reduction in both bias and MSE with both of our methods
over adjusting for only the fully measured covariates except when C contains the important
confounders. When m=1400, or 70% of the overall sample (the third row of figure 3.1), we again
see a significant reduction in both bias and MSE with both of our methods over adjusting for only
the fully measured covariates in most scenarios. Table 3.2 shows the % bias and MSE reduction

by scenario for both the SB and TSB methods over the naive analysis.

It is worth noting that, even if our interest were in estimating the conditional effect, 5, complete
case analysis fails to converge in many data sets when m=200 and even when m=1000 or 1400,

the MSE is significantly greater than either of our methods in most scenarios. (results not shown)

Ultimately, both the SB analysis and the TSB analysis performed comparably across scenarios.
They never performed worse than the naive analysis and in situations with a reasonably sized
supplemental data set, they tended to perform significantly better, in some cases eliminating bias

altogether.
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Table 3.2: Bias and MSE Reduction. Same 18 simulation scenarios as depicted in Table 3.1. % Reduction is
the reduction using SB and TSB, respectively, compared to the naive analysis.
m  Confounding pc,u % Bias (SB) %Bias (TSB) % MSE (SB) %MSE (TSB)
Reduction =~ Reduction = Reduction Reduction

1 200 = low 5.7 4.7 10.4 8.9
2 200 = mod 6.1 4.9 11.2 9.2
3 200 U stronger  low 6.6 6.6 124 12.5
4 200 U stronger mod 6.4 5.8 12.1 11.1
5 200 C stronger  low 55 4.4 8.9 7.7
6 200 Cstronger mod 5.0 41 8.4 7.2
7 1000 = low 28.6 28.7 442 443
8 1000 = mod 33.2 30.0 51.6 48.0
9 1000 U stronger low 34.2 37.0 55.5 58.9
10 1000 U stronger mod 35.0 32.7 56.5 53.6
11 1000  C stronger  low 25.6 23.7 36.9 35.9
12 1000  C'stronger mod 32.4 28.1 444 41.3
13 1400 = low 51.3 51.9 69.0 69.3
14 1400 = mod 54.6 50.9 74.4 71.8
15 1400 U stronger low 54.7 57.7 77.0 79.3
16 1400 U stronger  mod 55.6 52.3 78.2 75.5
17 1400 C'stronger low 54.2 52.5 59.9 59.4
18 1400 C'stronger mod 55.9 51.9 67.1 65.4

3.3.3 Sensitivity Analysis

More flexible adjustment for Z in the outcome model could, in theory, yield better results for both
of our methods. For instance, for the SB method, we also let h{-} be a natural cubic spline basis
function. Our results for this adjustment were nearly identical to our results where h{-} is the

identity function and we present the results for the more simple adjustment here.

Throughout our simulations we assume a linear regression model for f(Z|C, ). In our data sets
this was a reasonable assumption, but in other data sets, any model should be evaluated for feasi-

bility.
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3.4 Discussion

Combining heterogeneous sources of information has the potential to allow us to make use of
very large data sets that are perhaps missing key confounders and smaller supplemental data
with rich covariate information on only a subset of the population in order to estimate treatment
effects in the larger population. Existing methods are difficult to implement in the situation
where the partially measured covariates are high dimensional or contain both continuous and

categorical covariates.

Sturmer et al. (2005) previously proposed propensity score calibration as a method to combine
heterogenous data sources. Their method treats a propensity score calculated using only the fully
measured covariates as measured with error. They then use validation data and a measurement
error model to account for covariates present only in the validation data. However, their method
relies on the assumption that the propensity score measured with error is a surrogate for the “gold
standard” propensity score available in the validation data - a condition that would be violated
any time the direction of confounding from the partially observed covariates differs from that
of the fully observed covariates (Sturmer et al., 2007). Further, they show that violations of this
assumption can actually lead to an increase in bias. McCandless et al. (2012) suggest another
propensity score method that does not rely on the surrogacy assumption. Their method uses
‘conditional propensity scores” to adjust for confounders available only in a supplementary
dataset and reduces the ¢ dimensional partially measured covariates to a scalar quantity. Our two
proposed methods build on their work but address an important limitation with their methods.
We do not fit the PS and outcome models using the joint likelihood, as this is shown by Zigler
et al. (2013) to give biased estimates of the desired causal effect in most settings. We instead use

approximately Bayesian methods that cut the feedback from the outcome model to the PS model.

Our second method, TSB, has the distinguishing feature that the conditional propensity score

is estimated using only the supplemental data. Although this method doesn’t use the data as
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fully as the SB method, it provides the building block for more complex extensions. Zigler and
Dominici (2013) recently propose methods of Bayesian variable selection in PS models. The TSB
method can easily be extended to accommodate variable selection of the potential confounders
based on their joint association with exposure and outcome. While variable selection can also be
accomplished in the SB method, we would sacrifice the ability of the outcome to inform which

variables to include in the PS model.

Throughout we assume a linear regression model for f(Z|C, @) — a reasonable assumption in our
simulated data. However, more complex models might be necessary in other settings. Strategies
to marginalize over the distribution of Z, rather than imputing the missing Z, could also be
implemented. We expect that they would perform similarly to the methods presented but do not
investigate this here. Additionally, if we were uncertain of our choice of model for f(Z|C,8), a
multiple imputation approach might be advisable over a full Bayesian data augmentation. We
evaluated this approach in our simulations using the TSB method and found the results were
nearly identical to the full Bayesian data augmentation in our scenarios. Throughout we assume
no interactions between the fully measured covariates C' and the partially measured covariates
U. While presented in the context of a dichotomous outcome, extending these methods to a

continuous or categorical outcome is straightforward.

Although in many of the settings we investigated, our estimates are still biased, the bias is sig-
nificantly reduced over fitting only the fully measured covariates, a common approach. Further
extensions, such as a model averaging approach, could improve the performance of our methods

in many settings.
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Appendices



A.1 Model Feedback in Bayesian Propensity Score Estimation - Ap-
pendix

A.1.1 Simulation study with very flexible specification of /1 (v, C')

To further demonstrate the behavior of feedback in the joint Bayesian method, we conduct a
simulation study paralleling that of Scenarios 3 and 3" of the main text where every covari-
ate exits a unique treatment-covariate/outcome-covariate relationship, but we analyze the data
with a more flexibly specified outcome model. We refer to this simulation as Scenario 4. We
simulate data from expressions (1.8) and (1.9) of the main text, with (7o, 71, 72,73, 74,75, %) =
(0.0,0.1,0.2,0.3,0.4,0.5,0.6) and (v, a1, o, o3, s, o5, ) = (0.0, 0.6,0.5,0.4,0.3,0.2,0.1). Rather
than adjusting for subclasses based on PS quintiles, we specify h(v, C') as a natural cubic spline ba-
sis with 10 knots, placed at the deciles of logit (PS). Figure A.1a depicts boxplots of posterior mean
estimates of v and 3 for an analysis with § = 0 for the sequential frequentist and joint Bayesian and
methods. Figure A.1b depicts the same for an analysis with § # 0 and C*t = (, labeled Scenario
4. Note that the latter analysis with ¢ # 0 is analogous to the penalized spline of propensity pre-
diction method of Little (2011). The results of this simulation closely parallel those in the main text;
even when the PS enters the outcome in a highly flexible manner, failure to adjust for additional

covariates leads feedback to distort the estimates of v and, ultimately the causal effect.
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Figure A.l: Scenarios 4 and 4% with (v0,71,72,73,74:75,7%) = (0.0,0.1,0.2,0.3,0.4,0.5,0.6), and

(oo, 1, a2, a3, g, a5, 06) = (0.0,0.6,0.5,0.4,0.3,0.2,0.1): boxplots of estimates of v and 3 from the se-
quential frequentist and joint Bayesian analysis of 1000 replicated data sets. Horizontal dotted lines are at
the true parameter values.

A.2 Bayesian Adjustment for Confounding in the Presence of Multiple
Exposures - Appendices

A.2.1 Example with Marginal but not Joint Independence

The following is an example of where we have marginal independence between a covariate and
two exposures separately but not between the covariate and the exposures jointly. To illustrate
we use dichotomous exposures and covariates, which can easily be summarized in contingency
tables. For instance, C' could be an indicator variable such that C' = 1 if a county has a medicare
population that is younger than average and 0 otherwise. Also, imagine that X; = 1 if a county
had “high” ozone and 0 otherwise and X, = 1 if a county had “high” PMj 5 and 0 otherwise.

Further, suppose that our data can be summarized as follows:

Then, P(C = 1|X; = 1) = 4 = .0909,P(C = 1|X; = 0) = & = .0909 and

P(C=1)= 12 =.0909 = C 1L X;
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1 0 1 0 11[4 36
1[4 40 110 100 100 4
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002 16
Also, P(C = 1|X, = 1) = % = .0909,P(C = 1|X; = 0) = & = .0909 and

P(C=1)= 12 =.0909 = C 1 X,

BUT, P(C =1|X; = 1, X = 1) = &4 = 100 # P(C = 1) and P(C = 1|X; = 1, X = 0) = J =

)
0,P(C=1X1=0,Xo=1)=2=08,P(C=1X; =1,X,=1)= 2 =111 = C I {X1, X5}

A.2.2 Prior Distributions

A.2.2.1 Complete distributions for prior odds ratios given in section 2.2.4

Consider the most simple formulation of prior odds ratios given in section 2.2.4

=1laj! = 0,052 = 1)

= 0lam! =0,am? = 1)

Ploy, =1lag! =1,052 =1) _ Ploy, =1|ag! =1,052 =0) _ P(oy,
= = = w
P(aY, = 0lam! = 1,am2 =1)  P(a}, =O0lam! = 1,am2 =0) P(a,

Additionally, in order to ensure a marginal probability P(a;! = 1) = P(apx? = 1) = 3, we specify

m

the following prior odds ratios:

P(om' =0la}, =1)  Plam* =0la}, =1) 3w+1



X1 _ 1Y — Xo _ 110Y — 4 e
P(aX lley), = 0) _ P(ozg? l|ley), = 0) _ 30 @)
Plam! =0laY =0) Plapm?=0ja},=0) w+3

The prior odds in (2) assign a very low probability (0 for w = oo) of being included in either of
the two exposure models if that potential confounder is not included into the outcome model. A
marginal probability of £ implies a priori naiveté as to which covariates are associated with the
exposures; (1) and (2) could be adjusted for a different prior belief. These odds ratios also assume

a priori that the two exposure models are independent.

The above prior odds ratios imply the following joint, conditional and marginal probabilities:

Joint Probabilities:

v X X y - m
= P(a), = 1,0 = 0,a;%2 = )_i%ﬂ

Pa), =0,a5' = 1,a;? = 1) = P(a), = 0,a;' = 1,a,* = 0)

= P(a) = 0,0 = 0,052 = ):zlwil

Pla), = 1,05 = 0,02 = 0) = P(a), = 0,0 = 0,0, =0) —%

Conditional Probabilities:

PlaX = 1ot =1,aX2 = 1) = P(a), = 1|aXt = 1,052 = 0)

m:
= Play, =1laj =000 = 1) = =

1
P(aY 1|O[£1 :0’a£2: ):5

m =
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4w

P(ag! = lay, = 1) = P(ag? = 1lay, =1) =

Tw—+1
4
w

Marginal Probabilities:

As previously mentioned, the above priors are unnecessarily restrictive. A more general formu-
lation follows. This formulations allows us to treat the two exposure models differently or give

higher probability to those covariates associated with both treatments.

Conditional Odds Ratios

Pla) =1lant =102 =1) "

PlaY, =0lapt = 1,02 =1) ’

P(ay, = 1lap! =1,0™ =0) _ o

P(aY =0laim! = 1,02 = 0)

Play, =1jaX =0,052 =1) "

P(a), =0/aX1 = 0,002 =1) ?

Plal, = 1o 0.0 —0) _|

P(a, = 0lam' = 0, am? = 0)
P(O‘anl = 1|04nym =1) _ 2(w2 + 1) (w1 + w3 + 2wiws)
Plap! =0ja, =1) (1 +wi)(1+3w2)(1 +w3)
P2 =1lay =1)  2(w; + 1) (w2 + w3 + 2wows)
Plam? = 0ok, =1)  (1+w2)(I+3w)(1+ ws)
Pt = 1|a) = 0) 2(1 +w2)(2 +wr +ws)
Plon' =0laY, =0)  (1+w1)(2+w2)(1+ws)
Plajz =1la), =0) 21+ wi)(2+ w2+ ws)
P(c)c%2 = 0|a) =0) (14 w2) (24 wi) (1 +ws)
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Joint Probabilities:

Conditional Probabilities:

Marginal Probabilities:

1 w3
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1 2w 2w 2w
Y 1 2 3
m _8 +w1+1+WQ+1+W3+1

)

Priors on all other parameters are as recommended by Raftery et al. (1997) and are given below:

Priors:

b'e
i Ua ' |(O‘X1?O§(1) ~ N(MOQX17O-§(1¢2ZO(1X1)

2

X
o |(aX27 UXQ) ~ N(MOQX2 ) ‘7%(2 ¢220ax2)

7

Y
(617 /827 7704 )‘(aya 0_}2/) ~ N(,U’ana U}Z/(b220ay)

a%l,o‘%(rz,a%/ ~ Gamma(v/2,v\/2), where (v)\/2) is the inverse-scale parameter of the

Gamma distribution (i.e. E[0%,]=1/))
Hyperparameters:

® [lgoX1 = fgaXs = flgay =0

YoaX1> BoaXzs Loqv are diagonal matrices with elements equal to s2,

e =285
o v =2058
o \=10.28

A.2.3 Posterior Distributions

A.23.1 Assumptions

In order to derive the full conditionals and simplify the MCMC, several reasonable assumptions

are necessary. Roughly speaking, we can think of these in terms of five basic assumptions. First,
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given a fixed outcome model and the exposure, selecting that exposure model does not depend
on the other exposure model, model coefficients, or data not in that exposure model. Second,
given an exposure model, selection of the outcome model is independent of that exposure. Third,
given fixed exposure models and the outcome, selection of the outcome model does not depend
on the exposures or model coefficients. Fourth, given an outcome model, selection of the exposure
models does not depend on the outcome itself. Finally, given a model and data, estimation of the
coefficient(s) from that model does not depend on the other models or their coefficients. These

assumptions are given explicitly below. We believe that these are reasonable assumptions.

(Al) o™ L (X2,Y,8,7,0™?)| (a¥, X,,C)
(A2) X; L a¥|(a™,0)

(A3) o™ L (X1,Y,B,7,0)| (&, X5, C)
(A4) X, La¥|(a™2,0)

(A5) o L (X1,X5,8,7)] (@™,0%2,Y,C)
(A6) Y L (a1,a%2)] (Y, C)

(A7) v L (@™, ", B)| (a2, D)

(A8) B L (@™, a™,7)| (¥, D)

where XQ = X2 — ’yXl and Y/ =Y — (Ble + BQXQ + ,83X1X2).

A.2.3.2 Full Conditionals.

Our goal is to estimate the posterior distribution of (oY, aX1, a2

,A(whm)(él, d2)). We accom-
plish this by iteratively sampling from P(a*!|a’z,a¥,3,v,D)), P(aX2|a®,aY, 3,7, D)),

P(aY|aX1,a*2,8,v,D)), P(v|aX,aX2,a¥, 3, D)), and P(B|aX,aX?,a¥,v,D)). Recall that
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D=(X,Y, C). Derivations of these follow:

Al

1. P(@1|a’?,a”, 8,7, D) £ P(a]aY, X, C) P

P(XilaXt, o, C)P(C)P(a®|aY) a2 P(X1|a™t,C)P(C)P(a* ) N
P(X1,ClaY) B P(X1,ClaY)

P(Xi]a™1, C)P(a™t]a)),

where P(X;|a*t,C) =

D) A2
7r”/2f(y/2)|[n + 2 Woxy Booxs Wéxl |1/2

— _vtn
X{)‘V + (Xl - Waxl HoaX1 )/(In + ¢2Waxl EOaXI W(;Xl) 1(X1 - WaX1 lu’Oaxl)} 2

2. P(a*2]a’1,a¥, 8,7, D) ¥ P(a*2|aY, Xz, C) "V

P(X5la?, oV, C)P(C)P(a®*|aY) a4 P(Xs|a™?, C)P(C)P(a’?|a)
= = = X
P(X5,ClaY) P(X,,ClaY)

P(Xg\ax2, C)P(aXQ\aY),

where P(X,|aX?) =

D(52) (A2
7T”/2F(V/2)’In + ¢2WQX2 anx2 W(;Xz ’1/2

v+n

X {)‘V + (XQ - WaXQIU’OaXQ)/(In + ¢2Wax2 EOQXQ W(;X2)_1(X2 - WaX2lu’0aX2)}_ 2

Where W_x; is the design matrix for exposure regression j

3. P(a¥|a®t,a™2,3, D) 4 P(aY|aX, a2, Y, C) BayesThm

P(Y|a™X, a2, ¥, C)P(C)P(aY |aX1, aX?) A6 P(Y|aY,C)P(C)P(aY |aXT, aX?)

- - x
P(Y,C|a*1, aX2) P(Y,Cla*1, aX2)

P(Y|aY,C)P(a”|a™, aX?),
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where P(Y|aY) =

() )
W"/QF(V/2) |1, + ¢2Way Yoay Wéy ’1/2

_vtn

X {)‘V + (}} - WaYMO(xY)/(In + d)QWaYZOaYW(;Y)il(Y/ - WaYIuOCuy)} 2

Where W v is the design matrix for the outcome regression

A8

4. Finally, P(B|a™t, a®2,aY,v, D) = P(BlaY, D)

/Bj‘ay7 D ~ tn‘f’v(/Bj,nOtY?O.jQ"naY) forj = ]_, 2, 3

Where 3; v is the 4! element of 4,,,,v, aimy is the (j, j) element of S, v:

0,0y = (W(;Y Wy + EEO}Y/sz)_l(Ea;YMO,aY/sz + Wr;YY)

SnocY = (n + V)_I{VA + (Y - Wayenay)/y + (MO&Y - enay)lza(jYNOaY/¢2}{(Wéon¢Y +
Soav /097"

Similarly, P(y|a™t, a*2,aY, 3, D) 47 P(y|aX2, D)

v|aX2, D ~ tnto(VjnaXe 0-]2',nax2)
A.2.4 Data Analysis

In this appendix we describe the variables and data sources used in section 2.4. Table A.1 lists
all available covariates (C) and their data sources. All variables were averaged over the period
2008-2010. Table A.2 shows the variables that were dropped before beginning our analysis and
the reason (missing data or highly correlated (> 0.8) with other covariates). Figure A.2 shows
the distribution of covariates included in the analysis. Note that the plots are scaled by covariate.
Finally, Table A.3 shows the posterior probability of inclusion in (2.9) for each covariate for BAC-
ME and FBMA and whether or not it was included for NLASSO.
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Distribution of Covariates across Counties
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Figure A.2: Distribution of each covariate included in the analysis, by county. Each box plot is on its own

scale.
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Table A.1: All variables were averaged over the period 2008-2010.
Potential Confounders

Variable

Source

Median Income

HS grad rate

Urban rate

5 year migration rate
White rate

Black rate

Hispanic rate

Total Population

County Level Census Data

Smoking rate

Mean # of adults in house
Proportion in general good health
Prop. who did not see dr due to cost
Prop exercise in past 30 days
Prop with AMI

Prop with CHD

Prop stroke

Prop with asthma

Prop alcohol past 30 days

Prop with Hypertension

Prop who had a fall past 3 mo
Prop satisfied with life

Prop prior diabetes

Prop with good BMI

Prop with overweight BMI

Prop with obese BMI

Prop who don’t drink daily

Prop with Flu shot 12 mo

Prop with Pneumonia shot 12 mo
Prop Pre DM

Prop Own Home

County level data from the CDC’s Be-
havioral Risk Factor Surveillance Sys-
tem

Mean age
Female rate
White rate
Black rate

Medicare Beneficiary Enrollment Data
(Medicare recipients 65 and older)

temp,. .., temp’

temp stand dev

dew point,. .., dew point”
dew point stand dev

County level weather data
(www.ncde.noaa.gov, 2012)

ﬁg:g SN(? 2 Pollution Data from the EPA’s Air
2 Quality System Database (US EPA,
Mean CO 2012)
Mean Lead
i/cl)g(litv}\;est Geographic Regions as defined by the
Census Bureau (www.census.gov, 2012)
Northeast
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Table A.2: These variables were eliminated from the data before beginning our analysis.

Variable Reason
NOs, CO and SO, and Lead Not enough data points
" Black rate and White rate from the | Highly correlated with race proportions
medicare data from Census Data
" Prop with pneumonia shot 12mo | | Highly correlated with flushot
“Prop alcohol past 30 days |1 Highly correlated with Prop who don’t
drink daily
" Pre DM & Own_Home | Too many missing values

81



Table A.3: Posterior Support by Method. Posterior inclusion probabilities (P(a¥ |D)) of each of the 47
potential confounders where the o), are defined in (2.9) for BAC-ME and FBMA and whether or not a
variable was included in (2.9) for NLASSO.

Variable BAC-ME FBMA NLASSO

1 temp 1 1 1
2  temp.2 1 1 0
3 temp.3 1 1 0
4 temp.4 1 1 0
5 temp.5 1 1 0
6 temp.6 1 1 0
7  temp.7 0.15 0 0
8 dp 1 1 1
9 dp2 1 1 0
10 dp.3 1 1 0
11 dp4 1 1 0
12 dpb5 1 1 0
13 dp.6 1 1 0
14 dp.7 0.24 0.74 0
15 temperature_annual STD 1 1 0
16 Dew_point.annual STD 1 0 0
17 Median_income 0 0.75 0
18 HS_rate 1 1 0
19 Urban_rate 1 1 0
20 Migration_5_year rate 0.13 0 0
21 Hispanic_rate 0.75 1 0
22  white_rate 1 1 0
23  black_rate 0.26 0 0
24 Tot_pop 1 1 0
25 smoking 0 0.93 0
26 Mean_adult_in_house 0.06 0.22 0
27  General Health_good 0 1 0
28 Not_See_Dr_BC_Cost 0 0 0
29  Exercise_Past_30D 0.28 1 0
30 HX_AMI 0.82 0 0
31 Hx.CHD 1 0 1
32 Hx.stroke 0 0.09 0
33 Asthma 0.23 1 0
34 HTN 1 0.21 0
35 Fall_Past.3m 0.11 1 0
36 Satisfaction_with_life_Yes 0.38 0.76 0
37 DM 0.89 0.24 1
38 BMI_good 1 0.94 0
39 BMI.overweight 0 0.94 0
40 BMI.OB 0.19 0.86 0
41 No_Drink_daily 1 0.38 0
42 flu_shot_past_ 12m 1 1 0
43 mean_age. D 1 0.59 0
44 Female_rate D 1 1 1
45 Northeast 0.29 0 0
46 Midwest 0.78 0.04 0
47  South 1 0.97 0
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A.3 Propensity Score Methods for Combining Data Sources - Appen-
dices

A.3.1 MCMC Details for Sequential Bayesian Approach

We develop the MCMC algorithm for binary treatment and outcomes, assuming a probit link
function and using a latent variable approach (Albert and Chib, 1993). Further, we adjust for Z in
the outcome model as a linear covariate. Thatis h{Z} = Z. We specify a linear regression model

for E[Z|C]. In other words, Z;|C; ~ N(Cin,0?) fori =1,...,n.

A.3.1.1 Models

g(P(X; =1|C;,U;)) = Ciy + Uiy i=n+1,....,n+m
g(P(Y; = 1|X;,Ci, Z;)) = BX; + Ci€ + h{Z;}€ i=1,....n
g(P(Y; = 11X;,Ci, Zi)) = BXi + Ci€ + h{UA}E i=n+1,....n+m
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A.3.1.2 Prior Distributions

Let 0 = (5,€, é ), ¢ be the number of fully measured confounders plus 1 and p be the number of
partially measured confounders (recall that the first column of C' is the intercept). We factorize

the prior distribution P(v,7,0,n, %) as P(v)P(%)P(0)P(n|o?)P(c?).

We assume the following prior distributions:

5 ~ Ny(0, 251,

e N‘I(Ov )"‘/Iq)

0 ~ Ng12(0, Ao Iy +2)
e 0% ~ IG(ap,by)

77"72 ~ Nq(O, Uzqu)

and let A, = A5 = A\g = 1000, k£ = 10,000, ap = 20.1 and by = 2.

A.3.1.3 Posterior Simulation

We iteratively sample from P(Zpyim, v, Y| X™, C, Ugyp) then
PO|Y*, X,C,Usup,7, Zprim)- Note that Y*, X* are the underlying latent variables from the probit

regression models. From the priors specified above and (3.1) we have
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P(Zprim: 57,1, 0°| X, C, Usuy)
OCP(X;up|Csup,Usup7‘)’,‘~>’)P(X;rim|Cprim,Zprim,’)’)P(me'm!Cpnm,77,0’2)
xP(v,4,m,0°)
ocexp{—%( ;kup — (Csupy + USUP:Y))/(X:up = (Csupy + Usup¥)) }
xeepl =5 (Xirim — Corim + Zynio) K~ (Corimy + Zyprim))}
Xexp{_%(zpﬂm - Cprimn)/(U2In)_1(Zprim - Cprimn))}mp{_%(’Y/()“YIq)_l’Y}
xeep{ =3 (¥ O3 1) T Ho?) eap— 51 (*KIL) ) (o)~

—b
—

and

P(O|Y*, X,C, Usup, Zprim, )

O(P(Y;Lp|Xsup7 Csup7 Usup7 5’7 O)P(Y;;zm‘Xprzm; Cprirm Zprima O)P(e)

1 ~ -
ocemp{—i( s’;p - (6Xsuz> + Coup€ + (USUP:Y)'s))/( s’;p - (BXsup + Coup€ + (USUP:Y)g))}
xe:cp{—%(Y;;im - (BXpm'm + Cprimf + ZpTimé))/(}/;;im - (ﬁXpMm + Cpm’mé + me’mé)))}

1
Xefp{—iel()\oIqH)_le}
A3.14 MCMC Algorithm

U,y
Let Z() = ( Z(’zf > and W) = (X, C,ZW"). Define Vi = Usyp(U., Usup + 3 1p) UL, and

sup sup
prim

! I)"'C

Vasup = CSUP(C, Coup + E sup*

sup

From the posterior distributions in A.3.1.3, it is relatively straightforward to calculate the marginal

and conditional distributions that follow. The MCMC algorithm for iteration (t+1):
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1. Draw X squ Y from a truncated normal distribution with mean Csup'y( ) + Usup'y( ) and vari-

ance 1 as described in Albert and Chib (1993).

2. Draw X pg:%l) from a truncated normal distribution with mean C’pm'm'y( ) 4+ Z;T)Zm and vari-

ance 1.

+ 2(t) t+1 2(t)
3. Draw Zpgmm) from N (1—7-0'2<t) (X;Ezm ) Cpmm')/( ) + 2(t Cprimn(t))v 1_7_0.2(t))

4. Draw 02D from IG(ag + 22, by + 1/2(2EV 20D — ZUD'C(C'C + +1,)71C'2HD))
5. Draw "™ from N,((C'C + L1,)~'C'ZM+D o2t (C'C + L1,)71)

6. Draw 4"V from Ny ((C}y 1, Corim + Clp (I = V3) Coup+ 3 1) N (Copirn XV = 251 +

prim \“*prim prim

sup prim sup

Clop(L = V) X3i™), (€l Copimm + Cly (I = V3) Cip + 3=15) ™)

7. Draw 37D from Ny(Ulyy(In = Van)Usup + 3 p) ™ (Ul (Ton = V) X3iy™), (UL (T
Vo WUuip 52 1,) )

8. Draw Y*(*1) from a truncated normal distribution with mean W @(+1) and variance 1.

9. Draw 0U+D from N, o(WEHDWEHD 4 /\—Iq+2) T D)y« (W D (D
L))

A.3.2 MCMC Details for Two-Stage Approach

We again develop the MCMC algorithm for binary treatment and outcomes, assuming a probit
link function and using a latent variable approach (Albert and Chib, 1993). Further, we adjust for
Z in the outcome model as a linear covariate. That is h{Z} = Z. We specify a linear regression
model for E[Z|C]. In other words, Z;|C; ~ N(Cin,c?) fori = 1,...,n. Let Ox = (~,7), 0y =
(8,€,€), Wy = (C,U), Wy = (C, Z) and Z — < Zoup )

prim

A.3.2.1 Models

1. Stage 1

g(P(X; =1|C;,U;)) = Ciy + Uiy i=n+1,....,n+m
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2. Stage 2

g(P(Y; = 1|Xi,Ci, Z;)) = BX; + Ci€ + h{Z;}€ i=1,...,n+m

A.3.2.2 Prior Distributions

We factorize the prior distribution P(6x, 8y, n,0?) as P(0x)P(0y)P(n|o?) P(c?).

We assume the following prior distributions:

o Ox ~ N,(0, \y Wy Wy)
o Oy ~ Nygy2(0, Ay Iyi2)
° (72 ~ IG(ao,b())

. 17|(72 ~ Nq(O,UQqu)
and let A\x = Ay = 1000, ¥ = 10,000, ap = 20.1 and by = 2.

A.3.2.3 Posterior Simulation

*
sup?

A3.23.1 Stage1 In stage 1, we sample from P(0x|X},,, Wx sup). From the priors specified

above and (3.1) we have

P(0x|XZups Wi sup) <P (X5 W sup, 0x) P(0x)
1 * *
Ocexp{_i(Xsup - WX,SUPOX)/<Xsup - WX,SUPGX)}

1 1
61’]9{-5 (efX EW_;(,supWX,SUPOX)}
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A.3.23.2 Stage 2 In stage 2, we sample from P(Zpim, 0y, n,0?|Y*, X, Wy). From the priors

specified above and (3.1) we have

P(Zprim, Oy, 1,02 Y*, X, C, Zeup) < P(Y*|X,C, Z,0y)P(Zpri|Cprim, 1, 7%) P(0y ) P(n]c?) P(c?)
1 * *
x exp{—g(Y — Wy0y) (Y* — Wy6y)}
1 _
X e$p{_§(Zprim - Cprimn)/(UZIm-I—n) 1(Zprim - Cprimn)}

1 _ - 1 _ . b
< capl =0 Oy y12) " 0H(o?) P eap{— 5 (0PKE,)  mh(o?) o Deap{~5)
where Zsup = E[Ujy,7], the posterior mean of U;¥ from stage 1.
A.3.24 MCMC Algorithm

A3.24.1 Stagel

1 _ N _
1. Draw eg?_ ) from Nq+p(((1 + i)wé(,supwxysup) 1v‘/)/(,sup“)( (t)7 ((1 + i)w)/(,supwxﬁup) 1)
2. Draw X :&;H) from a truncated normal distribution with mean vasupegzﬂ) and variance 1

as described in Albert and Chib (1993).

A3.24.2 Stage?2

1. Draw Y*(+1) from a truncated normal distribution with mean Wl(/t ) Bg) and variance 1

prim

(A +€2)7)

3. Draw 2"V from IG(ag + ™™, by + 1/2(2HV/ 2+ — Zz(+D'C(C'C + L1,)~1C"ZH+Y))

-1 . s
2. Draw 2% from N((021(t> + E(t)2> ((1/;”,(;;;1) — BOX prim — Cprim€M)ED? + ﬁCprimn(t)) ,

4. Draw n"*V from N,((C'C + L1,)~'C'ZztH) o2+ (C'C + L1,)7)
5. Draw 0$+1) from N, o(WEDWE+H) 4 in+2)_1W(t+1)/Y*(t+l)’ (WD D)
%Iqﬁ)*l)
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A.3.3 Data Generating Mechanism for Simulations

The specific data generating mechanism for the simulation scenarios is outlined below.

. Generate Cprim,—1 from Ny (pprim, Xc) and Ciyp —1 from Ny (phsup, Xc)
. Generate U; |C from N, (C¢;, 71 1p1)

. Generate U, from N1 (0, Xy7)

. Generate X from Bin(n + m, pz) where px = ®((C,U) (:)’k: >) and @ is the cumulative dis-

Yk
tribution function of the standard normal distribution.

Bk

. Generate Y from Bin(n + m, py) where py = ®((X,C,U) | & |) and ® is the cumulative

&k

distribution function of the standard normal distribution.

Recall that the first column of C'is the intercept. py,, = 0 and ppim = 1. ¢ and Xy have

auto-regressive correlation structures (AR1) with p = 0.3. [ corresponds to the correlation between

C and U -low (I = 1) or moderate(! = 2) — and k corresponds to the relative ‘importance” of C

and U as confounders of the effectof X onY -C =U (k=1),C < U (k=2)orC > U (k = 3).

pl = 4 for all scenarios. Specific values of 7, ¢, v, 7, 8, § and € are as follows.

=1
’7’2—3

0.03 0.03 0.03 0.03 0.03 0.03
¢ 0.03 0.03 0.03 0.03 0.03 0.03
1

0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03
03 03 03 03 03 0.3
02 02 02 02 02 02
0.1 01 0.1 0.1 0.1 0.1
04 04 04 04 04 04

yi=(-1 02 02 0.1 0.1 0.05 0.05)
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0.1 0.1 0.1 0.1 0.05 0.05)

0.4 04 01 0.1 0.05 0.05)

(-1
(-1
(0.2 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.2)
(0.4 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.4)
(0.

5 =
Yo =
43 = (0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1)
& =(-2 02 005 01 0.1 0.2 0.05)
&=(-2 01 0.05 0.1 0.05 0.1 0.05)
:( 2 04 005 0.1 0.1 0.4 0.05)
= (0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.2 0.2)
é (0.05 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.4 0.4)
= (0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1)

A.3.4 Acknowledgements

Support for the research was provided by EPA grants R834894 and RD83479801, NIH grants
R21 ES020152, R01 ES019955, R01 ES019560 and R01 ES012054, NCI grant P01 CA134294-02 and
HEI grant 4909. The contents of this work are solely the responsibility of the grantee and do
not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the
purchase of any commercial products or services mentioned in the publication. Many thanks to

Brent Coull and Matt Cefalu for their thoughtful discussion and insight.

90



References

Albert, ]J. H., and S. Chib (1993), Bayesian analysis of binary and polychotomous response data,
Journal of the American Statistical Association, 88(422), 669-679, doi:10.2307 /2290350, ArticleType:
research-article / Full publication date: Jun., 1993 / Copyright 1993 American Statistical Asso-
ciation.

Bang, H., and J. M. Robins (2005), Doubly robust estimation in missing data and causal inference
models, Biometrics, 61(4), 962973, doi:10.1111/j.1541-0420.2005.00377 .x.

Dominici, F, R. D. Peng, C. D. Barr, and M. L. Bell (2010), Protecting human health from air pollu-
tion, Epidemiology, 21(2), 187-194, doi:10.1097 /EDE.0b013e3181cc86e8.

Gelman, A., and J. Hill (2007), Data Analysis Using Regression and Multilevel/Hierarchical Models,
Cambridge University Press.

Greenland, S. (1993), Methods for epidemiologic analyses of multiple exposures: A review and
comparative study of maximume-likelihood, preliminary-testing, and empirical-bayes regres-
sion, Statistics in Medicine, 12(8), 717736, d0i:10.1002 /sim.4780120802.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999), Bayesian model averaging: A
tutorial, Statistical Science, 14(4), 382—-401.

Lichtman, J. H., N. B. Allen, Y. Wang, E. Watanabe, S. B. Jones, and L. B. Goldstein (2009), Stroke
patient outcomes in US hospitals before the start of the joint commission primary stroke center
certification program, Stroke, 40(11), 3574-3579, doi:10.1161/STROKEAHA.109.561472.

Little, R. (2011), Calibrated bayes, for statistics in general, and missing data in particular, Statistical
Science, 26(2), 162-174, doi:10.1214/10-STS318, mathematical Reviews number (MathSciNet):
MR2858391; Zentralblatt MATH identifier: 06075150.

Little, R. J. A., and D. B. Rubin (2002), Statistical Analysis with Missing Data, Second Edition, 2 ed.,
Wiley-Interscience.

Madigan, D., J. York, and D. Allard (1995), Bayesian graphical models for discrete data, Interna-
tional Statistical Review / Revue Internationale de Statistique, 63(2), 215-232, d0i:10.2307 /1403615,
ArticleType: research-article / Full publication date: Aug., 1995 / Copyright 1995 International
Statistical Institute (ISI).

McCandless, L. C. (2012), Discussion of adjustment uncertainty and propensity scores, Biometrics,
68(3), 678680, d0i:10.1111/j.1541-0420.2011.01733.x.

McCandless, L. C., P. Gustafson, and P. C. Austin (2009), Bayesian propensity score analysis for
observational data, Statistics in Medicine, 28(1), 94-112, d0i:10.1002 /sim.3460, PMID: 19012268.

McCandless, L. C., I. J. Douglas, S. J. Evans, and L. Smeeth (2010), Cutting feedback in bayesian
regression adjustment for the propensity score, The International Journal of Biostatistics, 6(2), doi:
10.2202/1557-4679.1205.

91



McCandless, L. C., S. Richardson, and N. Best (2012), Adjustment for missing confounders us-
ing external validation data and propensity scores, Journal of the American Statistical Association,
107(497), 40-51, doi:10.1080/01621459.2011.643739.

NCI (2013), SEER, http:/ /seer.cancer.gov/.

Pope, G., J. Kautter, R. Ellis, A. Ash, J. Ayanian, L. iezzoni, M. Ingber, ]J. Levy, and J. Robst
(2004), Risk adjustment of medicare capitation payments using the CMS-HCC model, Quan-
titative Health Sciences Publications and Presentations.

Raftery, A. E. (1995), Bayesian model selection in social research, Sociological Methodology, 25, 111,
doi:10.2307/271063.

Raftery, A. E., D. Madigan, and J. A. Hoeting (1997), Bayesian model averaging for linear regres-
sion models, Journal of the American Statistical Association, 92(437), 179-191.

Robins, J. M., S. D. Mark, and W. K. Newey (1992), Estimating exposure effects by mod-
elling the expectation of exposure conditional on confounders, Biometrics, 48(2), 479-495, doi:
10.2307/2532304, ArticleType: research-article / Full publication date: Jun., 1992 / Copyright
1992 International Biometric Society.

Rosenbaum, P. R., and D. B. Rubin (1983), The central role of the propensity score in observational
studies for causal effects, Biometrika, 70(1), 41-55, d0i:10.1093 /biomet/70.1.41.

Rubin, D. (1985), The use of propensity scores in applied bayesian inference, in Bayesian Statistics,
vol. 2, pp. 463-472, Elsevier Science Publishers and Valencia University Press.

Rubin, D. B. (2007), The design versus the analysis of observational studies for causal ef-
fects: parallels with the design of randomized trials, Statistics in Medicine, 26(1), 20-36, doi:
10.1002/5sim.2739, PMID: 17072897.

Rubin, D. B. (2008), For objective causal inference, design trumps analysis, The Annals of Applied
Statistics, 2(3), 808-840, ArticleType: research-article / Full publication date: Sep., 2008 / Copy-
right 2008 Institute of Mathematical Statistics.

Schneeweiss, S., ]. A. Rassen, R. ]. Glynn, J. Avorn, H. Mogun, and M. A. Brookhart (2009), High-
dimensional propensity score adjustment in studies of treatment effects using health care claims
data, Epidemiology, 20(4), 512-522, d0i:10.1097 /EDE.0b013e3181a663cc.

Stuart, E. A. (2010), Matching methods for causal inference: A review and a look forward, Statisti-
cal Science, 25(1), 1-21, doi:10.1214/09-STS313.

Sturmer, T., S. Schneeweiss, J. Avorn, and R. J. Glynn (2005), Adjusting effect estimates for unmea-
sured confounding with validation data using propensity score calibration, American journal of
epidemiology, 162(3), 279289.

Sturmer, T., S. Schneeweiss, K. J. Rothman, J. Avorn, and R. J. Glynn (2007), Performance
of propensity score calibrationa simulation study, American journal of epidemiology, 165(10),
11101118.

92



US EPA, O. (2012), AQS data for downloading, TTN AIRS AQS, US EPA,
http:/ /www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqgsdata.htm, AQS data available
for downloading.

Vansteelandt, S. (2012), Discussions, Biometrics, 68(3), 675678, do0i:10.1111/j.1541-
0420.2011.01734.x.

Vedal, S., and J. D. Kaufman (2011), What does multi-pollutant air pollution research mean?,
American Journal of Respiratory and Critical Care Medicine, 183(1), 4-6, doi:10.1164/rccm.201009-
1520ED.

Wang, C., G. Parmigiani, and F. Dominici (2012), Bayesian effect estimation accounting for adjust-
ment uncertainty, Biometrics, 68(3), 661671, doi:10.1111/j.1541-0420.2011.01731.x.

www.census.gov  (2012), Reference maps - geography - U.S. census bureau,
https:/ /www.census.gov/geo/maps-data/maps/reference.html.

www.ncdc.noaa.gov (2012), National climatic data center (NCDC) | the world’s largest active
archive of weather and climate data producing and supplying data and publications for the
world., http:/ /www.ncdc.noaa.gov/.

Zigler, C. M., and F. Dominici (2013), Uncertainty in propensity score estimation: Bayesian meth-
ods for variable selection and model averaged causal effects, Journal of the American Statistical
Association.

Zigler, C. M., K. Watts, R. W. Yeh, Y. Wang, B. A. Coull, and F. Dominici (2013), Model feedback in
bayesian propensity score estimation, Biometrics.

Zou, H. (2006), The adaptive lasso and its oracle properties, Journal of the American Statistical Asso-
ciation, 101(476), 1418-1429, d0i:10.1198/016214506000000735.

93



