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Abstract

Background: The development of peripheral arterial disease (PAD) is heterogeneous even in the presence of similar risk
factors. Our aim was to determine whether inter-individual differences in leukocyte telomere length contribute to the
susceptibility of PAD.

Methods: A total of 485 patients with PAD (defined by the ankle-brachial index) and 970 age- and gender-matched controls
were recruited from seven rural communities in Henan Province in China. The relative leukocyte telomere length was
determined by a quantitative PCR-based method. Two common promoter variants of the hTERT gene were genotyped to
assess their effects on telomere length and the risk of PAD. In vivo luciferase assay was performed to study the
transcriptional activity.

Results: After adjustment for vascular risk factors and genetic variants in the hTERT gene, individuals in the lowest and
middle tertiles of telomere length had a significantly higher risk of PAD than did those in the highest tertile (odds ratio [OR]
1.73, 95% confidence interval [CI] 1.29–2.49 in the middle tertile; 3.15, 95%CI 2.31–4.29 in the lowest tertile). Haplotype
analysis using the 2 variants (rs2735940 and rs2853669) showed that subjects with the at-risk C-C haplotype had shorter
telomere length than those individuals with the T-T haplotype and consistently had 1.30-fold (OR 1.30, 95%CI 1.06–1.58;
P = 0.005) increased risk for PAD. The C-C haplotype had 43% lowered transcription activity of hTERT promoter (P,0.001).

Conclusion: The associations between the functional haplotype of hTERT gene and telomere length and the risk of
atherosclerotic PAD suggested that mean leukocyte telomere length may independently serve as a potential predictor of
PAD.
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Introduction

Atherosclerotic peripheral arterial disease (PAD) is a disease

characterized by progressive narrowing of arteries in the lower

limbs, and patients often suffer from leg ischemia, intermittent

claudication, and reduced quality of life. Importantly, both

asymptomatic and symptomatic PAD are associated with in-

creased risk of stroke, myocardial infarction, and death [1–4].

PAD affects approximately 8–10 million people in the United

States [5] and is increasingly prevalent in Europe and Asia [6–8].

In China, the prevalence of PAD was 8.7% among hypertensive

patients in our previous study [9]. PAD patients have vascular risk

factors similar to that of coronary artery disease, whereas at an

individual level, the progression of PAD seems to be highly

variable even in the presence of the similar risk factors profiles.

The inter-individual heterogeneities are still incompletely under-

stood, but biological aging is one of the contributors.

Telomere attrition represents one molecular mechanism that

contributes to cellular aging. Telomeres are specialized DNA-

protein structures at the end of all chromosomes, which preserve

chromosome stability and integrity [10]. During somatic cell

division, DNA polymerase cannot fully replicate the 39 end of

linear DNA, resulting in a progressive loss of telomeres. When

telomere lengths are shortened to a critical value, they lose capping

function at the chromosomal ends, activate the DNA damage

checkpoints, and eventually result in cellular senescence/apoptosis

which has been linked with the pathogenesis of atherosclerosis

[11]. Synthesis and maintenance of telomeres are mediated by a
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specialized ribonucleoprotein complex known as telomerase.

Human telomerase catalytic subunit, encoded by telomerase

reverse transcriptase (hTERT) gene, has shown to be a rate-

limiting determinant of telomerase activity and maintains genomic

stability by adding the telomere repeat TTAGGG to telomere

ends [12–14]. Recent experimental studies suggested a protective

effect of hTERT against endothelial dysfunction [11,15,16].

Leukocyte telomere length is inheritable and there is consider-

able inter-individual variation among people of the similar age

[17]. Its heritability has been estimated to be between 35% and

80% on the basis of twin and family studies [18–20]. A number of

suggestive genetic loci for telomere length in humans have been

mapped to chromosome 3p26.1, 10q26.13, 12q12.22, 14q23.2 in

family-based linkage studies [19–21] and to chromosome 18q12.2

[22], 3q26 [23,24,25], 10q24.33 [25], and 14q21 [26] in recent

genome-wide association analyses; but these identified loci, except

for TERC gene, are not replicated in multiple independent studies

and only explain a small fraction of the heritability of telomere

length. And none of the identified variants have been associated

with cardiovascular disease [27]. In contrast, functional variants in

hTERT gene have been reported to be associated with telomere

length and the risk of coronary heart disease in some studies

although not in others [28–30].

Emerging studies have provided consistent evidence that

telomere length shortening is a potential risk predictor for

coronary heart disease [31,32]; however, despite the prevalence

and high societal burden of PAD, our understanding of the genetic

basis of PAD is still limited [33,34]. Therefore, in the current

community-based case-control study, we aimed to investigate

whether mean leukocyte telomere length is a predictor of the

development of atherosclerotic PAD, and evaluate the effect of

common variants in the hTERT gene on risk difference of PAD.

Methods

Ethics Statement
The study was complied with the Declaration of Helsinki and

was approved by Institutional Review Board and Ethics Commit-

tee of Fu Wai Hospital. All participants reported themselves as

Han nationality, and provided written informed consent.

Study Population
This community-based case-control study consisted of 485

patients with PAD and 970 control subjects who were from seven

rural communities at the XinYang Country in the middle region

in China from 2004 to 2005 [9]. PAD was diagnosed when

patients had typical symptoms of intermittent claudication, such as

cramping pain of the calves or buttocks during exercise, or an

ankle-brachial index (ABI) of #0.9 in either leg, calculated

according to the recommendations of the American Heart

Association [35]. The ABI was determined from Doppler-derived

measurements of systolic blood pressure at the brachial and ankle

arteries (detailed description shown in the File S1). An ABI .0.9

and #1.4 in both legs was considered normal. Subjects were

excluded when they had any known diseases including heart

failure, valvular heart disease, secondary hypertension, and severe

debilitating chronic illness (cancer, renal, or hepatic diseases). For

each case, 2 control subjects matched by age (65 years) and

gender and without PAD were recruited from the same

communities.

Each participant was interviewed in a community clinic and

completed a standardized questionnaire that included demograph-

ic factors, medical history, lifestyle, and familial history. Anthro-

pometric measurements, including height, weight, waist and hip

circumference (measured at the umbilicus and the widest point,

respectively), were measured by trained researchers. Electrocar-

diogram was performed in all participants. Hypertension was

defined as systolic blood pressure of $140 mmHg or diastolic

blood pressure of $90 mmHg or currently taking medication for

hypertension.

Fasting blood was drawn from an antecubital vein after

overnight. Serum was separated on-site, then transported on dry

ice to Beijing center laboratory, and stored at 270uC until

measurement. Biochemical variables, including blood glucose,

total cholesterol, triglycerides, high-density lipoprotein (HDL)

cholesterol, and uric acid were assayed by an automatic analyzer

(Hitachi 7060, Tokyo, Japan) in the core laboratory at FuWai

Hospital.

Leukocyte Telomere Length Assay
Genomic DNA was isolated from peripheral blood leukocytes

according to standard procedures. Relative mean leukocyte

telomere length was determined with a quantitative real-time

polymerase chain reaction (PCR)-based technique that compares

telomere repeat copy number (T) to single-copy gene copy number

(S) (T/S ratio) in a given sample [36]. All PCRs were performed

on the Bio-Rad DNA Engine Opticon 2 Real-time PCR Detector

(Bio-Rad Ltd, Hercules, CA, USA).

In brief, two master mixes of PCR reagents were prepared, one

for the telomere reaction and one for the single-copy gene reaction

(b-globin gene on chromosome 11p15.5). The primer sequences

and thermal cycling profiles were given in details in the File S1. All

samples for both the telomere and single-copy gene amplifications

were done in duplicate in 96-well plates. The human embryonic

kidney 293 (HEK293S) cell line was used as standards for the

measurement of mean telomere length. A dilution series (1.56 to

100.00 ng; 2-fold dilution; 7 points) using genomic DNA derived

from the HEK293S cell line were included with each 96-well plate

for the telomere and the b-globin PCRs. The 25-ng standard curve

point was used as the reference sample. The slope of the standard

curve for the telomere and b-globin reactions was 20.22 and

20.35, respectively, and the linear correlation coefficient (R2)

value for both reactions were .0.99 (File S3). The average inter-

plate coefficient of variability was 6.6% for telomere assays and

4.8% for b-globin assays. As part of routine quality control, 10% of

the samples were randomly chosen to test the reproducibility of the

assay. All measurements were performed by technicians blinded to

the case-control status.

hTERT Gene Variants Selection and Genotyping
Telomere length is regulated by telomerase activity, and the

expression level of human telomerase reverse transcripts (hTERT)

is a major determinant of telomerase activity. The hTERT gene is

located on chromosome 5p15.33 (geneID: 7015), which is strictly

regulated by the transcriptional activity of the promoter region.

We sequenced the promoter region of the hTERT gene (Genbank

accession no. AF098956) [37] in 50 randomly chosed control

subjects and identified three common variants with a minor allele

frequency above 10%, rs2736109 (21600 G/A), rs2735940

(21327T/C), and rs2853669 (2190T/C) with positions defined

by the transcription initiation site as +1 [37] (File S3). By searching

putative nuclear factor-binding sites, we found that rs2853669 is

located at a binding site for the transcriptional factor Ets2, which is

a critical regulator of the hTERT gene expression [37–39]. The

variant rs2735940 (21327T/C) has been reported to be associated

with coronary artery disease in some studies but not replicated in

others [27–29]. Based on the potential biological functions, we
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selected the 2 tagging variants rs2853669 and rs2735940 for

further analysis in this association study.

The 2 selected variants were genotyped using the polymerase

chain reaction-restriction fragment length polymorphism ap-

proach without knowledge of case or control status (Primers was

shown in File S2). Reproducibility of genotyping was confirmed by

sequencing in 400 randomly selected samples with 100%

concordance.

Construction of hTERT Promoter Plasmids and Luciferase
Reporter Assays

To determine whether the genetic variants and their haplotypes

affect the transcription activity of hTERT gene, a series of

luciferase reporter plasmids were constructed. First, because

rs2853669 resides within a binding site for the transcriptional

factor Ets2 and partly overlapped with the transcriptional factor c-

Myc, which regulates the hTERT gene expression [38], we

generated 2 types of luciferase reporter plasmids containing

rs2853669TT- or CC- genotype: pGL3-rs2853669T and pGL3-

rs2853669C. Second, we generated 4 types of luciferase reporter

plasmids with different haplotypes: pGL3-TT (T-T haplotype with

rs2735940T and rs2853669T), pGL3-TC (T-C haplotype with

rs2735940T and rs2853669C), pGL3-TT (C-T haplotype with

rs2735940C and rs2853669T), and pGL3-CC (C-C haplotype

with rs2735940C and rs2853669C). The 1.5-kb fragment of the

proximal promoter of hTERT gene (Genbank accession

no. AF098956), encompassing rs2735940 and rs2853669, was

amplified and cloned into the pGL3-basic vector (Promega,

Madison, WI, USA). The pGL3-basic vector contains the cDNA

encoding firefly luciferase; when it was fused with a promoter and

transfected into mammalian cells, the construct can be used to

analyze the inserted promoter activity. In addition, we constructed

plasmids for expression of pcDNA3.1-Ets2 and pcDNA3.1-c-Myc,

and investigated whether the transcription factors Ets-2 and c-Myc

modify the effects of genetic variants on the transcription activity

of hTERT gene. Primers for constructing the reporter plasmids

were shown in File S2. All the constructs were confirmed by

sequencing.

Hela cells and Hek293S cells were seeded in 96-well plates,

respectively. On the day of transfection, each well was co-

transfected with 0.2 mg of the pGL3 vector, 5 ng of the pRL-TK

vector (Promega), 0.1 mg of pcDNA3.1-Ets2, or pcDNA3.1-c-Myc

by using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

The pRL-TK vector, encoding the Renilla luciferase, was used as

internal control to normalized firefly luciferase expression.

Twenty-four hours after transfection, the cell lysates were

Table 1. Characteristics of peripheral arterial disease patients and control subjects.*

Characteristics Cases with PAD (n = 485) Control subjects (n = 970) P value{

Age, years 58.669.4 58.369.4 0.52

Male, n (%) 179 (36.9%) 372 (38.3%) 0.60

Body mass index, kg/m2 25.263.7 25.763.6 0.07

Waist-hip ratio 0.8760.06 0.8860.06 0.28

Systolic blood pressure, mm Hg 163629 158628 0.002

Diastolic blood pressure, mm Hg 96614 95613 0.10

Glucose, mmol/L 5.6262.19 5.4961.88 0.21

Lipids, mmol/L

Total cholesterol 5.5961.27 5.4661.13 0.05

Triglycerides 1.39 (0.96–1.91) 1.31 (0.95–1.80) 0.28

HDL cholesterol 1.5660.33 1.5560.35 0.35

LDL cholesterol 3.1760.99 3.1060.90 0.15

Serum creatinine, mmol/L 67.9638.0 66.7631.4 0.52

Cigarette smoking, n (%) 105 (21.6%) 178 (18.3%) 0.13

Alcohol intake, n (%) 114 (23.5%) 194 (20.0%) 0.12

Medical history, n (%)

Hypertension 346 (71.3%) 614 (63.2%) 0.002

Diabetes mellitus 21 (4.3%) 35 (3.6%) 0.50

Cardiovascular disease 103 (21.2%) 31 (3.2%) ,0.0001

Medication treatment, n (%)

Antihypertension 294 (85.0%) 507 (82.4%) 0.31

Blood-glucose control, n (%) 18 (85.7%) 25 (69.4%) 0.17

Lipid-lowing therapy 52 (65.8%) 91 (65.5%) 0.96

Telomere length

Relative T/S ratio 1.8861.00 2.7661.51 ,0.0001

PAD indicates peripheral arterial disease; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; T, telomere repeat copy; S, single-copy
gene globin copy.
*Data are given as mean 6 SD, numbers (percentage) or medians (interquartile range). Telomere length is expressed as a relative telomere/single-copy gene (T/S) ratio.
{P value was calculated between PAD patients and control subjects by the two-sample t-test for comparison of continuous variables, the x2 test for categorical variables,
and the Mann-Whitney U test for triglycerides and telomere length.
doi:10.1371/journal.pone.0047029.t001
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prepared with the Dual-luciferase reporter assay system (Promega),

and Firefly and Renilla luciferase activities were measured with a

luminometer (Turner, Sunnyvale, CA, USA). The transfection

efficiency was normalized according to the Renilla luciferase

activity. Each transfection was carried out in triplicate and

repeated 3 times.

Statistical Analysis
Normal distribution of data was examined by the Kolmogorov–

Smirnov normality test. The T/S ratios of mean leukocyte

telomere length were natural logarithm transformed because of a

skewed distribution. Characteristics of cases and controls were

compared by x2 test for categorical variables and two-sample t test

for quantitative variables. The distributions of the T/S ratio of

telomere length were divided into tertiles among control subjects,

and the cutoff values were ,1.87 for the lowest tertile, 1.87–3.23

for the middle tertile, and .3.23 for the highest tertile. The odds

ratios (ORs) and 95% confidence intervals (CIs) were estimated for

the association between telomeres and the risk of PAD by using

conditional logistic regression models. Multivariate analyses were

adjusted for body mass index, fasting triglycerides, total choles-

terol, high-density lipoprotein cholesterol (HDL-C), fasting blood

glucose, blood pressure, smoking status (never, past, current),

alcohol intake (current drinker, yes/no), and further for medical

history, including hypertension (yes/no), diabetes (yes/no), previ-

ous cardiovascular disease (yes/no), and antihypertensive therapy

(yes/no).

The x2 test was used to examine the Hardy-Weinberg

equilibrium for each variant and to compare the distribution of

allele and genotype frequencies between cases and control

subjects. Generalized linear regression model was used to compare

the differences in telomere length across the genotypes by

adjustment for the covariates mentioned above. When the overall

difference was statistically significant, a Tukey test was performed

as post hoc test to identify significant differences between the 3

genotype groups. The associations between the hTERT gene

variants and risk of PAD were estimated using conditional logistic

regression analysis by adjustment for the covariates mentioned

above, and the P value was corrected for multiple comparisons (for

the 2 tested variants and the 3 genetic models) by Simes’ method, a

modified Bonferroni procedure [40]. The linkage disequilibrium

between tested variants was calculated using Haploview software

4.2, and the R2 was used to indicate the strength of linkage

disequilibrium. Haplotype analysis was conducted on the basis of

the Stochastic-EM algorithm using the THESIAS program [41].

The sex-specific associations were also examined by computing the

interaction term.

The population-attributable fraction was estimated for variants

with the following equation: population-attributable frac-

tion% = 1006p(OR21)4[p(OR21)+1]; p is the frequency of the

at-risk genotypes among control subjects. All probability values

were 2-sided, and P,0.05 was considered significant. Analyses

were performed with SPSS software, version 13.0 (SPSS Inc,

Chicago, USA).

Results

Clinical Characteristics of Study Participants
In this study, age, presented as mean6SD, was 58.669.4 years

in cases and 58.369.4 years in controls, and men accounted for

36.9% of cases and 38.3% of controls (Table 1). As expected, PAD

patients had a higher prevalence of history of cardiovascular

disease and hypertension; they also had higher levels of systolic

blood pressure and total cholesterol. There were no significant

differences in clinical characteristics by tertiles of mean telomere

length in PAD patients and control subjects, including blood

pressure, smoking, alcohol intake, and medical treatments of

antihypertensive therapy, blood-glucose control and lipid-lowing

therapy (File S2).

Association between Leukocyte Telomere Length and
PAD

The mean leukocyte telomere length was significantly shorter in

PAD patients than in control subjects (mean 6SD: 1.8861.00

versus 2.7661.51; P,0.001; File S3). Overall, the telomere T/S

ratio (natural log-transformed) was significantly inversely correlat-

ed with chronological age, and decreased 8% per decade (95% CI

23.2 to 213.4; correlation coefficient c= 20.10; P,0.001) in

control subjects and 6% per decade (95% CI 23.0 to 213.8;

correlation coefficient c= 20.11, P,0.001) in PAD patients,

Table 2. Risk of peripheral arterial disease in different tertiles of leukocyte mean telomere length.

In tertile groups of relative T/S ratio

Per 1-SD decrease in
ln-transformed relative
T/S ratio

Highest tertile
(.3.23)

Middle tertile
(1.87–3.23)

Lowest tertile
(,1.87) P for rend P

Cases with PAD (n = 485) 49 (10.1%) 147 (30.3% 289 (59.6%)

Control subjects (n = 970) 324 (33.4%) 324 (33.5%) 322 (33.2%)

Odds ratio (95%CI)*

Crude model 1.0 1.90 (1.37–2.58) 3.32 (2.47–4.47) ,0.0001 1.78 (1.58–2.01) ,0.0001

Multivariable model I{ 1.0 1.82 (1.31–2.55) 3.22 (2.36–4.38) ,0.0001 1.77 (1.57–1.99) ,0.0001

Multivariable model II{ 1.0 1.71 (1.24–2.36) 3.12 (2.32–4.18) ,0.0001 1.75 (1.55–1.97) ,0.0001

Multivariable model III1 1.0 1.73 (1.29–2.49) 3.15 (2.31–4.29) ,0.0001 1.74 (1.54–1.97) ,0.0001

PAD indicates peripheral arterial disease; CI, confidence interval.
*Odds ratio and 95%CI were obtained with multivariate conditional logistic regression analysis.
{Model I: Adjustment for body mass index, systolic and diastolic blood pressure, smoking, alcohol intake, fasting glucose, triglycerides, total cholesterol, HDL cholesterol,
and LDL cholesterol.
{Model II: Adjustment for the covariates mentioned above plus diabetes, history of hypertension, previous cardiovascular disease, and medication treatment.
1Model III: Adjustment for individual genetic variants rs2735940 and rs2853669 of the hTERT gene, except for the covariates mentioned in Model II.
doi:10.1371/journal.pone.0047029.t002

Telomeres and Risk of Peripheral Arterial Disease

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e47029



respectively (File S3). However, there was no difference in the

regression line slopes between controls and cases (P = 0.42).

In both crude analysis and multivariable analysis adjustment for

conventional vascular risk factors, individuals in the lowest and

middle tertiles of telomere length had a significantly higher risk of

PAD than did those in the highest tertile (multivariate OR 1.71,

95%CI 1.24–2.36 in the middle tertile; 3.12, 95%CI 2.32–4.18 in

the lowest tertile; P for trend,0.0001); and further adjustment for

the effect of genetic variants in the hTERT gene, the association

between shorter telomere lengths and increased risk of PAD was

not remarkably changed (Table 2). The associations were not

observed a sex-specific effect. In subsidiary analyses, telomere

length was analyzed as a continuous variable and was associated

with 75% increased risk of developing PAD per 1-SD decrease

(multivariate OR 1.75, 95%CI 1.55–1.97; P,0.0001). We also

tested for the effect modification by age, gender, smoking, alcohol

intake, history of hypertension, medication treatment, and genetic

variants by performing analyses stratified by these variables and by

evaluating interaction terms. Decrease of leukocyte telomere

length remained to be associated with the risk of PAD in various

groups (File S3). Because the observed association between shorter

telomeres and PAD could be biased due to the association with

coronary heart disease, we also performed sensitivity analyses by

excluding those subjects with history of heart diseases, and the

results were not substantially changed (File S2). Of the risk factors

measured, marginally significant inverse associations were found

between telomere length and waist-hip ratio, serum total

cholesterol, and LDL cholesterol, which indicated that longer

telomeres corresponded with a better health status (File S2).

hTERT Gene Variants Predispose to Telomere Length
Shortening and PAD Risk

The frequencies of rs2735940 and rs2853669 in the hTERT

gene did not deviate significantly from Hardy-Weinberg equilib-

rium in this case-control sample population (all P.0.05). Before

implementation of this study, we performed a statistical power

analysis to verify whether the recruited sample could provide

adequate power to identify the genetic association [42]. Based on

the present sample size, assuming 80% statistical power, at an

alpha of 0.05, we had the ability to detect an association with ORs

of $1.10 if the minor allele frequency is 0.50 and $1.90 if the

minor allele frequency is 0.01, assuming an additive model.

In an allelic association analysis, the presence of the C-allele of

rs2853669 was associated with increased risk of PAD (Table 3).

Table 3. Association between variants in the TERT gene and risk of peripheral arterial disease.

Genetic variants
PAD cases
(n = 485)

Controls
(n = 970)

Crude OR
(95%CI)*

Adjusted OR
(95%CI) { Adjusted P{ Corrected P{

rs2735940 (21327T.C)

Allele

T 57.6% 60.1%

C 42.4% 39.9%

Allelic Association 1.11 (0.95–1.30) 1.08 (0.90–1.26) 0.21 0.56

Genotype, n (%)

TT 160 (33.0%) 322 (33.3%) Ref. Ref.

TC 239 (49.3%) 522 (53.8%) 0.92 (0.72–1.18) 0.87 (0.68–1.12) 0.29 0.58

CC 86 (17.7%) 126 (13.0%) 1.38 (0.99–1.92) 1.27 (0.90–1.79) 0.17 0.51

Additive model (CC vs.TC vs.TT) 1.12 (0.95–1.32) 1.08 (0.91–1.28) 0.37 0.74

Dominant model (CC+TC vs.TT) 1.01 (0.80–1.28) 0.97 (0.76–1.23) 0.78 0.78

Recessive model (CC vs. TC+TT) 1.44 (1.06–1.94) 1.38 (1.01–1.88) 0.04 0.24

rs2853669 (2190T.C)

Allele

T 56.7% 62.5%

C 43.3% 37.5%

Allelic Association 1.27 (1.09–1.49) 1.21 (1.02–1.40) 0.002 0.02

Genotype, n (%)

TT 149 (30.7%) 367 (37.8%) Ref. Ref.

TC 252 (52.0%) 478 (49.3%) 1.30 (1.02–1.65) 1.27 (0.99–1.64) 0.06 0.36

CC 84 (17.3%) 125 (12.9%) 1.66 (1.18–2.32) 1.62 (1.14–2.29) 0.006 0.05

Additive model (CC vs.TC vs.TT) 1.29 (1.10–1.52) 1.27 (1.08–1.51) 0.005 0.04

Dominant model (CC+TC vs.TT) 1.37 (1.09–1.73) 1.35 (1.06–1.71) 0.005 0.04

Recessive model (CC vs. TC+TT) 1.42 (1.03–1.90) 1.38 (1.01–1.89) 0.04 0.16

PAD indicates peripheral arterial disease; OR, odds ratio.
*Crude ORs (95%CI) were determined by x2 test, cases vs. control subjects.
{Adjusted ORs (95%CI) and adjusted P value were obtained with multivariate conditional logistic regression analysis by adjusting for body mass index, triglycerides, total
cholesterol, HDL cholesterol, LDL cholesterol, blood glucose, blood pressure, smoking, alcohol intake, diabetes, history of hypertension and cardiovascular disease,
medication treatment, and telomere lengths.
{Corrected P value was obtained by the Simes’ procedure, a modified Bonferroni correction for multiple comparisons.
doi:10.1371/journal.pone.0047029.t003
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Figure 1. Correlations between telomere length and hTERT gene variants. Data shown were the means 6 S.E.M. S.E.M. denotes standard
error of the mean. Multiple linear regression analysis was used to compare the mean leukocyte telomere lengths by genotypes of rs2853669 (Panel A)
or by haplotypes containing rs2735940 and rs2853669 (Panel B) in the hTERT gene promoter region among PAD patients and control subjects,
respectively, after adjustment for age, gender, and conventional vascular risk factors. Haplotype analysis was conducted on the basis of the
Stochastic-EM algorithm using THESIAS program, and possesses 2 loci rs2735940 and rs2853669 from left to right. **P = 0.005, compared with wild-
type TT genotype; P = 0.002 and P = 0.08, compared with wild-type T-T haplotype.
doi:10.1371/journal.pone.0047029.g001
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After adjustment for body mass index, vascular risk factors, and

telomere lengths, subjects with the CC genotype of rs2853669 had

higher susceptibility to PAD compared with the wild-type TT

genotype carriers (additive model: OR 1.27, 95%CI 1.08–1.51,

P = 0.005; dominant model: OR 1.35, 95%CI 1.06–1.71,

P = 0.005; Table 3). The estimated population-attributable frac-

tion for PAD was 8.9% for the at-risk genotype of CC. After

correction for multiple testing by Simes’ procedure, the associa-

tions remained statistically significant. Because hypertension is an

important risk factor for PAD, an additional analysis in the

hypertensive patients was conducted, and our data showed that

these positive associations were independent of the status of

hypertension. For the variant rs2735940, we did not observe the

association with PAD after adjustment for vascular risk factors and

further for multiple testing.

Figure 1A showed the mean leukocyte telomere length by

genotypes of rs2853669 in the hTERT gene. After adjustment for

age, gender, and other vascular risk factors with multiple linear

regression analysis, telomere length was correlated to rs2853669 in

PAD patients, but not the controls, and the standardized

coefficient b for the at-risk C-allele of rs2853669 was 20.17

(P = 0.005) compared to the wild-type T-allele. The mean

leukocyte telomere length was markedly shorter in carriers with

the CC genotype of rs2853669 than that in the TT carriers among

PAD patients (1.6060.11 vs. 2.0360.08; P = 0.005; Figure 1A). No

correlations were found between telomere length and the variant

rs2735940 (File S2).

In addition, given that the effect of a single gene or variant on a

complex disease is expected to be modest, a haplotype analysis

using the 2 variants (rs2735940 and rs2853669) was performed to

assess the haplotype effect on telomere length shortening and the

risk of PAD. Subjects with the at-risk C-C haplotype had shorter

telomere length than those individuals with the wild-type T-T

haplotype among PAD patients (1.0460.09 vs. 1.9760.12;

P = 0.002), while a marginally significant difference was found

among the controls (Figure 1B). Consistently, the C-C haplotype

was associated with 1.30-fold (OR 1.30, 95%CI 1.06–1.58;

P = 0.005) increased risk of PAD after adjustment for vascular

risk factors and telomere lengths (Table 4).

hTERT promoter with C-C haplotype had lower
transcription activity

To investigate whether the individual variants and haplotypes

affect the transcription activity of hTERT gene, we constructed a

series of luciferase reporter plasmids containing rs2735940 and

rs2853669 and measured the luciferase activity representative of

hTERT promoter activity. The results showed that the

rs2863669CC genotype has 17% decreased luciferase activity

than the wild-type genotype of rs2863669TT (P = 0.02, Figure 2).

When co-transfected with the transcriptional factors Ets2 and c-

Myc in in vivo luciferase assays, Ets2 and c-Myc had a combined

effect by enhancing the promoter activity of hTERT gene, and the

promoter activity of the rs2863669CC genotype decreased 22%

(Figure 2).

Compared with the wild-type T-T haplotype, the hTERT

promoter haplotype carrying the at-risk rs2853669C allele had

significantly lower luciferase activity, with 31% decrease for the T-

C haplotype and 43% decrease for the C-C haplotype (P,0.001),

respectively; whereas no significant difference was detected for the

C-T haplotype with no stimuli of transcriptional factors (Figure 3).

When co-transfected with the transcriptional factors Ets2 and c-

Myc in in vivo luciferase assays, a combined effect on the promoter

activity of hTERT gene was observed, and the transcription

activity of the C-T, T-C or C-C haplotypes decreased significantly

compared with the wild-type T-T haplotype (Figure 3). Results in

Hela cells were consistent with that in Hek293S cells (data not

shown).

Discussion

In the present study, to our knowledge, our data for the first

time showed that leukocyte telomere length shortening is

significantly associated with increased risk for atherosclerotic

PAD. We also found that a loss-of-function haplotype C-C

(rs2735940 and rs2853669) in the promoter region of the hTERT

gene (a major determinant of telomerase activity), affects the

transcriptional power in vivo luciferase activity assays and is

associated with shorter telomere length in patients with athero-

sclerotic PAD. In addition, our results showed that carriers with

the at-risk C-C haplotype have increased risk for the development

of PAD. The associations were independent of those conventional

vascular risk factors.

Atherosclerotic PAD, a common manifestation of systematic

atherosclerosis, is closely linked to the aging of human beings.

Although classic risk factors, such as smoking, diabetes mellitus,

hyperlipidemia, and hypertension, have been found to predict the

occurrence of PAD, there is wide variation in disease manifestation

in individuals who have the similar risk profile. Telomere length

serves as a potential marker of human aging because of its

important features as ‘biological clock’ in genome stability; for

example, it decreases progressively with chronological age, varies

Table 4. Haplotype analysis of variants rs2735940 and rs2853669 and the risk of peripheral arterial disease.

Controls Cases Crude ORs Multivariable model I{ Multivariable model II{

Haplotypes* (n = 970) (n = 485) (95% CI) ORs (95% CI) P ORs (95% CI) P

T-T 0.477 0.446 Ref. Ref. Ref.

T-C 0.124 0.130 1.08 (0.83–1.39) 1.10 (0.84–1.43) 0.49 1.06 (0.80–1.34) 0.43

C-T 0.148 0.122 0.84 (0.65–1.09) 0.84 (0.64–1.10) 0.20 0.82 (0.62–1.05) 0.18

C-C 0.251 0.302 1.33 (1.09–1.61) 1.36 (1.12–1.66) 0.002 1.30 (1.06–1.58) 0.005

Global P 0.003 0.004

*Haplotype analysis was conducted on the basis of the Stochastic-EM algorithm using THESIAS program. Haplotypes possess 2 loci rs2735940 and rs2853669 from left
to right.
{Multivariable model I: Adjustment for conventional risk factors, including body mass index, triglycerides, total cholesterol, HDL cholesterol, blood glucose, blood
pressure, smoking, alcohol intake, diabetes, history of hypertension, and medication treatment.
{Multivariable model II: Adjustment for telomere lengths, except for those covariates mentioned in model I.
doi:10.1371/journal.pone.0047029.t004
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considerably among people of the similar age, and is strongly

linked to inflammation and oxidative stress.

We observed a linear correlation between telomere shortening

and chronological age in the current study, and on average the

leukocyte telomere length in our PAD patients was comparable to

that of control subjects chronologically 5 years older. Our findings

lend support to the hypothesis that premature biological aging

may contribute to the risk of PAD. Although the exact mechanism

explaining the relationship between shorter telomere length and

PAD cannot be determined from our study alone, there are several

plausible explanations. Decreased telomere length in circulating

leukocytes mirrors the replicative history of bone marrow-derived

endothelial progenitor cells which have been considered as

important agents of vascular repair [43]. Telomere shortening-

induced endothelial cell senescence has also been reported in

human atherosclerotic plaque lesions [11]. In addition to the

effects on vascular repair and endothelial progenitor cell function,

telomere shortening can increase the level of circulating pro-

inflammatory cytokines and oxidative burden, which are central to

the pathogenesis of atherosclerosis and arterial stiffness. Indeed,

epidemiological studies have shown that telomere length shorten-

ing may be used as a potential marker for age-related diseases [44],

most notably coronary heart disease [31,32].

Of the telomerase-associated pathway genes that encode

proteins for the telomere-specific nucleoprotein complex, telome-

rase reverse transcriptase (hTERT) is the rate-limiting catalytic

subunit and a major determinant of telomerase activity [45].

hTERT expression is strictly regulated at the transcription

Figure 2. Effect of individual variant rs2853669 on the promoter transcription activity of hTERT gene. The luciferase reporter plasmids
containing the hTERT gene promoter region with rs2853669TT- or CC- genotype were constructed and then transfected into Hek293S cells. The pGL3-
Basic is the promoter-less vector as a negative control. Firefly luciferase activity was expressed relative to control, normalized to Renilla luciferase
activity to correct for transfection efficiency. (A) Without co-transfection of transcription factors Ets2 and c-Myc; (B) With co-transfection of Ets2; (C)
With co-transfection of c-Myc; (D) With co-transfection of both Ets2 and c-Myc. Data shown are the means 6 SD, n = 3. *P = 0.02, P = 0.03, **P,0.001,
compared with the relative luciferase activity of the wild-type rs2853669T.
doi:10.1371/journal.pone.0047029.g002
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machinery, and thus it may be speculated that sequence changes

in the hTERT promoter region interfere with the activation/

depression of hTERT gene and are associated with the inter-

individual variation of telomere length. In the present study, we

found that a loss-of-function haplotype C-C (rs2735940 and

rs2853669) within the promoter region of the hTERT gene is

associated with shorter telomere length and increased risk for the

development of atherosclerotic PAD. The biological relevance of

these observations is further supported by our results in vivo

luciferase activity assays which showed a lower transcription power

for the C-C haplotype.

Genetic variant rs2853669 is located at 190 bp upstream the

hTERT transcription starting site, residing within a specific binding

site for Ets2, which has been suggested to be a positive regulator of

the hTERT gene and to be required for telomerase activation [38].

A transition from T to C of rs2853669 results in the damage of

Ets2 core binding sequence ‘GGAA/T’, which may affect the

binding ability of Ets2 and therefore the transcriptional efficiency

and expression level of the hTERT gene. Consistent with our

study, a decreased telomerase activity has been related to the

rs2853669C allele in a recent study on non-small cell lung cancer

[38]. In addition, the sequence containing rs2853669T/C also

partly overlapped with the binding site of transcriptional factor c-

Myc which plays a critical role in the hTERT gene expression

[37,38]. It is reasonable to speculate that an interaction

mechanism exists, which determines the Ets-Myc overall effect

at this described polymorphism site. Our experiments in vivo

luciferase assays further showed that transcription power of the

hTERT gene was significantly enhanced with the co-expression of

Ets2 and c-Myc compared with the presence of either Ets2 or c-

Myc. Recent evidence also supports that Ets2 transcription factor

probably play as a positive regulator of hTERT gene, especially

when c-Myc proteins are also expressed [39]. The other variant

rs2735940T/C is located at 1327 bp upstream the hTERT

transcription starting site and its relations with telomere shortening

and coronary artery disease are not consistent in various studies

[27–29]. Although our data did not observe the single-locus

association between rs2735940 and telomere length or athero-

sclerotic PAD, haplotype analysis showed that subjects carrying

both rs2735940C and rs2853669C have shorter telomere length

Figure 3. Haplotype effect of variants rs2735940 and rs2853669 on the promoter transcription activity of hTERT gene. The luciferase
reporter plasmids containing the hTERT gene promoter region with haplotype T-T, T-C, C-T, or C-C (rs2735940 and rs2853669) were constructed and
then transfected into Hek293S cells. (A) Without co-transfection of transcription factors Ets2 and c-Myc; (B) With co-transfection of Ets2; (C) With co-
transfection of c-Myc; (D) With co-transfection of both Ets2 and c-Myc. Data shown are the means 6 SD, n = 3. **P,0.001, compared with the relative
luciferase activity of the wild-type haplotype T-T.
doi:10.1371/journal.pone.0047029.g003
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and higher prevalence of PAD compared with those individuals

with the wild-type haplotype.

Several limitations should be considered. First, not all variants

at the hTERT gene were assessed in this study, complete

sequencing will be necessary for systematic identification of

potentially causative mutations. Second, leukocyte telomere

lengths were measured from the DNA from patients after

diagnosis of PAD in the present study, which in turn could have

already been affected by disease progression; therefore, more

prospective studies in various populations are needed. Third,

technical challenges further complicate the measurement of

telomere length. While the quantitative PCR-based assay is the

most economical, high-throughput method for telomere length

measurements in large epidemiologic studies [31,32,36], values are

relative representations of the average telomere length. However,

the PCR-based method has been previously shown to be highly

consistent with classic Southern blotting [31,32], which suggests

that assessment of mean telomere length using the PCR-based

method is reliable. The range of T/S ratio in the present study is

relatively high than other publications using the similar quantita-

tive PCR method. Most publications used one studied sample as

the calibrator sample of telomere length measurement [2], and

thus commonly available standards were lack. Here, the present

study used the human embryonic kidney 293 cell line as standard,

which represent a well-characterized standard to gain comparable

measures between studies [46]. More replication studies are

further needed.

A number of suggestive genetic loci for telomere length in

humans have been identified through family-based linkage studies

[19–21] and genome-wide association analyses [22–26]. Although

the genome-wide association studies have been spectacularly

successful so far in complex traits, such as myocardial infarction

and diabetic mellitus, it is an open question whether we will

ultimately be able to identify most of the genetic variation that

accounts for common diseases using this approach. For example,

only the TERC locus, encoding the RNA template component of

telomerase, has been identified and replicated in multiple

independent populations for its association with telomere length

[23–25,47]; however, it accounts for no more than 1% of variation

in telomere length [24], and no associations with atherosclerotic

vascular diseases were observed [27].

Conclusions

Aging is a major risk factor for atherosclerotic PAD. Our study

showed that shorter leukocyte telomere length is significantly

associated with increased risk for the development of PAD,

independent of those conventional vascular risk factors. Subjects

with the at-risk C-C haplotype (rs2735940 and rs2853669) of the

hTERT gene (a major determinant of telomerase activity), have

shorter telomere length and a higher prevalence of PAD. These

results are further supported by functional analysis that the C-C

haplotype affects the transcriptional ability of the hTERT gene.

These observations support the hypothesis that telomere shorten-

ing can be used as a prognostic marker for age-related

atherosclerotic PAD. Nevertheless, further studies in larger

samples are needed to support our intriguing finding.
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