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Abstract

The identification of nucleotide sequence variations in viral pathogens linked to disease and clinical outcomes is important
for developing vaccines and therapies. However, identifying these genetic variations in rapidly evolving pathogens adapting
to selection pressures unique to each host presents several challenges. Machine learning tools provide new opportunities to
address these challenges. In HIV infection, virus replicating within the brain causes HIV-associated dementia (HAD) and
milder forms of neurocognitive impairment in 20–30% of patients with unsuppressed viremia. HIV neurotropism is primarily
determined by the viral envelope (env) gene. To identify amino acid signatures in the HIV env gene predictive of HAD, we
developed a machine learning pipeline using the PART rule-learning algorithm and C4.5 decision tree inducer to train a
classifier on a meta-dataset (n = 860 env sequences from 78 patients: 40 HAD, 38 non-HAD). To increase the flexibility and
biological relevance of our analysis, we included 4 numeric factors describing amino acid hydrophobicity, polarity, bulkiness,
and charge, in addition to amino acid identities. The classifier had 75% predictive accuracy in leave-one-out cross-validation,
and identified 5 signatures associated with HAD diagnosis (p,0.05, Fisher’s exact test). These HAD signatures were found in
the majority of brain sequences from 8 of 10 HAD patients from an independent cohort. Additionally, 2 HAD signatures
were validated against env sequences from CSF of a second independent cohort. This analysis provides insight into viral
genetic determinants associated with HAD, and develops novel methods for applying machine learning tools to analyze the
genetics of rapidly evolving pathogens.
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Introduction

The identification of nucleotide sequence variations in viral

pathogens linked to disease and clinical outcomes is important for

developing treatments and vaccines, and furthering our under-

standing of host-pathogen interactions. However, identifying viral

mutations correlated to disease phenotype requires addressing a

number of challenges, including high viral mutation rates and

rapid evolution of viral pathogens in response to host selection

pressures. Rapidly evolving viral pathogens, such as HIV, hepatitis

C, and influenza, adapt to immune and drug selection pressures

unique to each host as well as unique microenvironments within

individual tissue sites [1–6]. Additionally, viral populations within

a host often share phylogenetic lineages due to founder effects and

genetic bottlenecks arising from primary infection by a small viral

population [1,7,8]. Amino acid sequences exist within the three-

dimensional structure of a folded protein, bringing distant regions

in close proximity and increasing the likelihood of compensatory

mutations and genetic covariation between non-contiguous amino

acid positions [9]. Moreover, in some instances similar amino

acids can fulfill similar biochemical roles within a protein, making

them functionally interchangeable [10,11]. Because of these

properties, biologically relevant signatures have the potential to

include sets of amino acids with similar biochemical properties at

positions distant in the linear sequence. Addressing these

challenges requires statistical methods able to mine complicated

datasets and discriminate between relevant genetic signatures and

patient-specific adaptations.

Recent works have applied machine learning tools to discover

patterns in noisy biological datasets [12–14]. For example,

classifier-based machine learning methods trained on HIV

sequences can accurately predict biologically relevant outcomes

such as coreceptor usage, immune epitopes, and drug resistance

mutations, and identify functional groupings of amino acid

positions within protein classes [11,15,16]. However, many of

these works focus on development of a tool for classification of

novel sequences, and thus utilize machine-learning algorithms,

such as SVM, whose resulting classifiers are not easily interpret-

able [17]. Pillai et al. applied the more interpretable C4.5 and

PART algorithms to investigate amino acid positions discriminat-

ing HIV coreceptor usage or tissue compartment of origin

[4,16,18], though the positions identified were not used to
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generate sets of signatures correlated to a particular class or

outcome. Further studies have identified genetically linked amino

acid positions in the HIV env by utilizing mutual information

analysis and evolutionary-network modeling [19–21]; however,

correlation to clinical outcome was not explored. Recent work

identified HIV env signatures found in early infection, but this

analysis assessed participation in a priori defined structural and

functional groups [22]. Current machine learning algorithms can

train a naı̈ve classifier to identify genetic signatures correlated with

clinical outcome with no requirement for initial structural or

functional information. However, careful algorithm selection and

dataset assembly is required to allow interpretation of the resulting

classifier.

The genetic diversity and high mutation and replication rate of

HIV create significant opportunities and challenges for sequence

analysis [23]. As well as being the causative agent in AIDS, HIV

replicating in the brain is linked to development of HIV-associated

neurological disorders (HAND) of which the most serious, HIV-

associated dementia (HAD), occurs in 20–30% of untreated

patients [24,25]. Highly active antiretroviral therapy (HAART)

has reduced the incidence of HAD, but the prevalence of less

severe neurocognitive disorders has increased significantly [26–

34]. Furthermore, in settings where access to antiretroviral

treatment is limited, HAD remains a significant cause of mortality

and morbidity [24].

The mechanisms leading to the development of HAD are not

well understood (reviewed in [24,32,34,35]). HIV enters the brain

early in acute infection, likely via trafficking of infected lympho-

cytes and monocytes [36–39]. HIV replicates in CD4+ T-cells and

macrophages in non-brain tissues and predominantly in macro-

phages and microglia within the brain [24,40–42]. Neuronal

injury may begin during the burst of viral replication occurring in

the acute phase soon after infection, and may continue during

chronic replication of virus in the brain throughout infection

[24,30]. However, the presence of virus replicating in the brain

alone is not sufficient to induce neuronal damage; only a subset of

patients develop neurocognitive impairment and there is disagree-

ment over whether high levels of viral replication in the blood,

CSF, or brain are predictive for development of HAD (reviewed in

[24,32]). Nadir CD4 count and baseline plasma or CSF viral load

are associated with increased risk of neurocognitive impairment in

treatment-naı̈ve patients; however, these relationships are con-

founded by HAART treatment and tissue site variations in viral

load [27,43–50]. A better understanding of mechanisms underly-

ing development of HAD is required for improved diagnosis,

treatment, and prevention.

The HIV env gene is the main viral determinant of macrophage

tropism and viral replication in the brain, and has also been

implicated in viral neurotoxicity [24,38,51–57]. Potential causes of

neurotoxicity include direct effects, including env binding and

activation of chemokine receptors, or bystander effects, such as

immune activation and inflammation [24,35,58–61]. Viral entry

into the brain is thought to be ubiquitous across patients; however,

levels of viral entry and replication in the brain vary from

undetectable to high, as do degrees of neurocognitive impairment,

though not necessarily in tandem [34,45,46,49,62–64]. Previous

work demonstrated a close relationship between macrophage

tropism and brain compartmentalization [65–69], and identified

amino acid positions in env associated with replication in brain or

development of HAD [18,56,70–75]; however, these findings are

not sufficient to explain the observed clinical variability, nor do

they address combined effects of multiple amino acid positions. To

identify genetic signatures in the HIV env gene associated with

HAD, we developed a machine-learning pipeline capable of

mining genetic sequences to identify sets of amino acids correlated

to clinical outcome. We then applied this pipeline to the analysis of

a meta-dataset of HIV env sequence sampled from the brain of 78

patients clinically assessed for the development of HAD.

Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The IRB at Dana-Farber Cancer

Institute approved the research as exempt because all data and

samples were obtained anonymously without any donor identities.

Assembly of Training and Validation Meta-datasets
We utilized the HIV Brain Sequence Database [76,77] to

assemble a training meta-dataset of 860 clade-B HIV env sequences

cloned directly from the brain of 78 patients without prior

coculture or in vitro passage (Table 1). Clinical diagnoses of HIV-

associated neurological disorders were obtained for all patients,

either from the database or their original publications. In most

cases diagnoses correspond to guidelines established by the

Working Group of the American Academy of Neurology AIDS

Task Force [78] and updated by the National Institute of Mental

Health and the National Institute of Neurological Diseases and

Stroke Working Group [25]. For each patient, genetic compart-

mentalization was assessed using the Slatkin-Maddison test [79],

implemented in Hyphy [80], to make pairwise comparisons

between tissue compartments with greater than 20 sequences in at

least one compartment and greater than 4 sequences in both, as

indicated by previous work benchmarking compartmentalization

analysis [81].

Generation of Phylogenetic Tree
An amino acid consensus sequence was generated for each

patient using the consensus maker tool at the LANL HIV

Sequence Databases [82]. Consensus sequences were used to

generate a phylogenetic tree by maximum likelihood in the

Treefinder program [83] using the JTT substitution matrix, and

an optimized discrete Gamma heterogeneity model with 4 rate

classes.

Alignment, Weighting, and Translation of Sequences to
Amino Acid Properties

Sequences were aligned and translated to amino acids using the

HIVAlign tool from the LANL HIV Databases [82] implementing

HMM-align [84], and the resulting alignments manually adjusted.

Shannon entropy of the amino acid alignment was calculated

using the Entropy-One tool hosted at the LANL HIV Sequence

Databases [82]. To ensure that patients with different sequencing

depth were weighted equally, individual sequences were weighted

by: (total number of sequences in the dataset)/(total number of

patients * total sequences in that patient) as described previously

[85].

Four numeric factors describing amino acid biochemical

properties were added to the alignment, in addition to amino

acid identities, representing each amino acid position in each

sequence as a categorical identity plus a vector of 4 numeric

factors. These factors, representing amino acid polarity, secondary

structure, molecular size or volume, and electrostatic charge, were

derived in work by Atchley et. al. [10] by applying factor analysis

to the 494 attributes in the AAIndex [86]. The resulting

alignments of amino acid identities and factors were converted

to ARFF format using a custom perl script.

Mining Genetic Signatures of HIV Dementia
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Generation of Signatures Sets Using the PART Algorithm
in Weka

Weka version 3.7.3 was used as a data mining platform and

included the J48 implementation of the C4.5 decision tree inducer

[87]. Feature selection was performed using the WrapperSubse-

tEval method and J48 decision tree inducer both with default

parameters for feature evaluation, and the BestFirst greedy hill-

climbing algorithm for optimal feature search. For the selected

features, the PART rule-learning algorithm [88] utilizing the J48

decision tree inducer was applied with default parameters to

classify sequences by HAD diagnosis. Individual rules within the

rule-set were interpreted as amino acid signatures. Rules based on

numeric ranges of amino acid factors were converted to lists of

matching amino acids. Accordingly, ranges of biochemical

features derived by machine learning may include amino acid

identities not actually observed at that position in the training

dataset. Therefore, only those amino acids actually observed at

that position within the training dataset are included in the

signature. After signature generation, all amino acid positions

included in signatures were removed from the original dataset and

the feature selection and PART steps were iterated. Iterative

signature generation continued until signatures gave no improve-

ment over random class assignment as assessed by the kappa

statistic , = 0, calculated using a multi-instance learning wrapper

to account for grouping of sequences by patient.

Validation
Leave-one-out cross validation was performed using a custom

perl script, sequentially holding out one patient from the training

set, retraining the classifier, and evaluating its ability to predict the

class of the held out patient. Optimal patient classification was

achieved using HAD signatures only. Patients were classified as

HAD when 95% of their constituent sequences matched a HAD

signature.

Fisher’s exact test was used to assess the distribution of HAD

and non-HAD patients with sequences matching each signature.

Q-values were calculated from p-values using fdrtool {Untitled:tn}

in R.

Results

A Machine Learning Pipeline for Genetic Analysis
To develop an exploratory tool that would allow identification

of HIV genetic signatures correlated to HAD, we developed a

machine-learning pipeline utilizing the C4.5 decision tree inducer

incorporated in the PART algorithm to analyze a meta-dataset of

env sequences. A similar method utilizing the PART algorithm

with cross-validation was previously used to predict coreceptor

usage of HIV env sequences, resulting in greater predictive

accuracy than the ‘‘charge rule’’ [16].

Decision tree induction and specifically the C4.5 algorithm is a

powerful method of training an interpretable classifier that

identifies sets of attributes able to differentiate between classes of

observations. The algorithm has the advantage of functioning well

within a noisy dataset and incorporates methods of accounting for

missing data, an important factor as differing sequencing coverage

leads to incomplete data at borders of the region analyzed. The

C4.5 algorithm trains a decision tree by sequentially adding

attributes that best differentiate between class, then pruning the

resulting tree to control for overfitting. The resulting decision tree

is readily interpretable, allowing identification of sets of attributes

most discriminatory for class. To translate decision trees into

independent sets of genetic signatures, we adopted the PART

algorithm, based on C4.5, to generate decision rule sets. Briefly,

the PART algorithm uses C4.5 to generate a decision tree, and

Table 1. Summary of patients included in the brain training, brain validation, and CSF validation HIV env sequence datasets.

HAD non-HAD All

A Brain training set

Publications 18

Patients 40 38 78

Sequences 604 256 860

Median CD4a: count (range) 40 (2–400) 246 (0–824) 87 (0–824)

ART Treatmentb ART: 18, none: 2, unknown: 13 ART: 8, none: 16, unknown: 14 ART: 26, none: 2, unknown: 27

B Brain test set

Publications 3

Patients 10 0 10

Sequences 75 0 75

Median CD4a: count (range) 60 (77–120) 60 (77–120)

ART Treatmentb ART: 3, none: 1, unknown: 6 ART: 3, none: 1, unknown: 6

C CSF

Publications 7

Patients 27 14 41

Sequences 277 116 393

Median CD4a: count (range) 137 (16–592) 200 (13–512) 146.5 (13–592)

ART Treatmentb ART: 20, none: 3, unknown: 4 ART: 5, none: 2, unknown: 7 ART: 25, none: 5, unknown: 11

Patient annotations and publication references available in Table S1.
aCells per microliter.
bART, antiretroviral therapy.
doi:10.1371/journal.pone.0049538.t001

Mining Genetic Signatures of HIV Dementia
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then interprets the path from the root of the tree to the strongest

leaf as a rule set predictive of the class of that leaf. All sequences

matching that rule are removed from the analysis, and the process

is iterated to generate a new rule until all sequences can be

classified. The PART algorithm has the advantage of generating

sets of independent rules linked to class, each of which can be

interpreted as an amino acid signature correlated to patient

diagnosis. Using feature selection to reduce the number of

attributes supplied to a machine-learning algorithm has been

shown to improve performance [89]. Therefore, prior to rule

generation using the PART algorithm, we used a wrapper method

with the C4.5 decision tree inducer evaluated by a greedy hill-

climbing algorithm to select the optimal set of attributes for

machine learning. Because the PART algorithm generates an

optimal classifier, not necessarily a classifier that captures the

entirety of the structure within the data, we recursively applied

PART, removing amino acid positions incorporated into signa-

tures after each iteration, until the resulting classifier showed no

improvement over random assortment by kappa statistic. The

kappa statistic measures the chance-corrected agreement between

the classifier and true classes; a kappa statistic greater than zero

indicates better than random assortment and a kappa of one

indicates perfect agreement [90]. The complete analysis pipeline is

illustrated in Figure 1.

Meta-dataset Assembly
One challenge to examining the viral genetics associated with

development of HAD is assembling a dataset of brain-derived viral

sequences containing a sufficient sample size of patients and

sequences to provide statistical power for data analysis. The

majority of brain tissue samples are obtained at autopsy, and few

studies have assembled a large cohort of HIV patients and

samples. To address this, we used the HIV Brain Sequence

Database (HBSD) to assemble a meta-dataset containing published

clade B HIV env sequences cloned from brain tissue [76,77]. The

HBSD is a curated database of HIV env sequences cloned directly

from tissues, using methods that minimize the chance of PCR

resampling. Previous work sequencing brain-derived env sequences

has focused mainly on the V3 region, which contains important

determinants of viral coreceptor usage, macrophage and brain

tropism, and influences interactions with chemokine receptors,

which in turn may influence neuroinflammation and neurotoxicity

[24,35,52,61,91–93]. We focused on the V3 loop and surrounding

C2 and C3 regions, amino acid positions 265–369 (numbered

according to the reference strain HXB2, Genbank accession

number K03455), both because of its biological importance and

because this region provided the greatest number of patients and

sequence depth. The meta-dataset contains 860 sequences from 78

patients (40 HAD and 38 non-HAD) (Table 1 and Table S1A).

The majority of patients (n = 63) were sampled at autopsy with

late-stage AIDS and low CD4 counts (median CD4 T cell count

was 87 cells/mL); however, this dataset also included 15 patients

Figure 1. Analysis pipeline for identification and validation of genetic signatures associated with HAD. After initial assembly,
alignment, and weighting of the sequence dataset, for each amino acid position in each sequence, four numeric factors describing the biochemical
properties of the amino acid at that position are added to the alignment. This factor alignment enters the machine-learning phase where preliminary
feature selection is used to select the attributes (amino acid identities or biochemical factors) that best differentiate between classes. Using the PART
algorithm, this reduced set of attributes is used to train decision rules describing amino acid signatures correlated to disease outcome. Amino acid
positions included in these signatures are removed from the main factor alignment and the process is iterated until no additional discriminatory
signatures can be generated. Signatures are then validated by leave-one-out cross-validation, Fisher’s exact test, and assessment in brain and CSF-
derived virus from independent cohorts.
doi:10.1371/journal.pone.0049538.g001
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with pre-symptomatic HIV infection who died of non-AIDS

related causes. The majority were sampled between 1991 and

2000, and were drug naive or on pre-HAART regimens. For all

patients with sufficient sequences from brain and non-brain tissue

sites for phylogenetic testing of compartmentalization (38 of 78

patients), brain-derived sequences were genetically compartmen-

talized from non-brain sequences (p,0.05 by Slatkin-Maddison

test for compartmentalization). Patients were clinically assessed for

dementia status and grouped either as HAD, which included

diagnoses of mild, moderate, or severe HAD and severity not

specified, or non-HAD, which included patients that were

clinically assessed and determined to be non-demented. Removing

mild-HAD patients from the analysis, including only severe-HAD

patients, or removing presymptomatic patients, produced similar

results to analysis of the full dataset, albeit at lower statistical power

due to reduced patient numbers (data not shown).

Within the meta-dataset, patient depth of sequencing was

variable, ranging from patients with a single sequence to patients

with 116 sequences. Median sequencing depth was 5, and was

similar between HAD and non-HAD (5.5 and 5, respectively).

Virus within each patient is genetically related due to founder

effects caused by infection by a small initial population.

Unaddressed, this has the potential to bias analysis for motifs

found in highly sequenced patients. To account for this effect, we

weighted sequences by the inverse of patient sequencing depth,

such that all patients had equal weight during data mining, as

described previously [85].

To rule out patient clustering by study or tissue bank, or

transmission chains, we constructed a phylogenetic tree of the

amino acid consensus sequences for the C2-V3-C3 region of each

patient (Figure 2). We observed no patient clustering by study or

tissue bank. Additionally, we observed no clustering by dementia

status; HAD (red) and non-HAD (blue) patients were interspersed

throughout the branches of the tree.

Addition of Biochemical Factors to the Amino Acid
Alignment

A preliminary analysis of the amino acid alignment identified

positions where multiple amino acid identities were correlated to

one class of disease outcome. Sets of amino acids can have similar

biochemical properties and may fulfill the same functional role in a

protein. To increase the flexibility and power of the analysis, we

incorporated numeric measures of amino acid biochemical

properties into the analysis. We utilized the work of Atchley et al.

[10], which applied factor analysis to summarize the contents of

the Amino Acid Index, a comprehensive but highly redundant

database of 494 numeric descriptors of amino acid biochemical

properties, into 5 global factors: Factor 1: Polarity, Accessibility,

Hydrophobicity; Factor 2: Propensity for Secondary Structure;

Factor 3: Molecular Size; Factor 4: Codon Composition; Factor 5:

Electrostatic Charge. These factors are linear and numeric,

Figure 2. Unrooted phylogenetic tree of patient consensus sequences for the C2-V3-C3 region of HIV env. A consensus sequence for
the C2-V3-C3 region was generated for each patient in the brain dataset (n = 78). These consensus sequences were used to generate an unrooted
maximum likelihood tree. Patients are colored by HAD diagnosis and identified by patient codes taken from their original publication.
doi:10.1371/journal.pone.0049538.g002

Mining Genetic Signatures of HIV Dementia
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allowing for integration into the machine-learning pipeline. We

chose to include 4 of the 5 factors describing basic amino acid

biochemical properties, excluding codon composition, as we were

most interested in mining functional roles of amino acids within

env. Our final dataset consisted of an amino acid alignment for

which each position in each sequence consisted of a categorical

attribute for amino acid identity and 4 numeric attributes

describing properties of that amino acid. Analysis of identities

plus 4 amino acid factors showed improvement in the descriptive

power of resulting signatures over analysis of identities alone. At

positions where multiple amino acids were correlated with class,

mining identities alone resulted in generation of redundant

signatures differing only at one position (data not shown). In

contrast, the addition of numeric factors describing biochemical

properties allowed generation of single signatures that included a

numeric range encompassing correlated amino acids.

Generation and Validation of Amino Acid Signatures
Analysis of the training dataset of amino acid identities and 4

biochemical factors completed 2 iterations of the data-mining

pipeline, generating kappa statistics of 0.332 and 0.28. The

pipeline stopped after the second iteration, discarding the third set

of signatures with a kappa statistic of -0.14, indicating no

improvement over random assortment. These first 2 iterations

produced sets of 8 and 10 signatures, respectively. A negative

control set was generated by randomly permuting HAD diagnosis

class labels across patients. The data mining pipeline identified no

predictive signature sets from the negative control set and stopped

in the first iteration with a kappa value of 20.041 (data not

shown). We retained the rules generated from this negative control

for use in further validations. Because our dataset was not of

sufficient size to split into training and test sets, we used leave-one-

out cross validation to determine predictive accuracy and test for

overfitting. This method generates a series of independent training

and test sets by sequentially removing one patient from the

training set, retraining the classifier and testing the ability of the

classifier to predict the HAD status of the held-out patient. We

examined the distribution of HAD and non-HAD classified

sequences within patients to select criteria for patient classification.

For the majority of patients, the percentage of sequences matching

a signature was close to a binary division; either no sequence

matched or all or nearly all sequences matched. HAD signatures

were a stronger predictor of patient class than non-HAD

signatures, and the most accurate predictions were made based

on HAD signatures alone. This led us to empirically set the

threshold for classifying a patient as HAD at 95% of the patient’s

sequences predicted as HAD, yielding a 75% predictive accuracy

in leave-one-out cross validation.

To assess the associations of individual signatures with patient

class, we used Fisher’s exact test to evaluate the distribution of

matching sequences across patients. The PART algorithm utilizes

a layered approach to mine sub-structures within the data,

removing matching sequences before training the next signature.

However, we wished to determine which signatures were

independently significant, outside the background of preceding

signatures. Thus, we evaluated the distribution of matching

sequences across patients in the complete brain dataset. 5 of 8

signatures in the first iteration and 5 of 10 signatures in the second

iteration had p-values ,0.05 (Table 2). Of these 10 signatures, 5

were associated with HAD and 5 with non-HAD. False discovery

rate-adjusted q-values were significant (q,0.05) for each of these

10 signatures (data not shown).

One caveat to the analysis by Fisher’s exact test is that the p-

values generated resulted from testing the frequency of these

signatures in the same dataset from which they were generated. To

examine this bias, we applied Fisher’s exact test to the set of

negative control signatures generated in the first iteration (kappa

value 20.041) of the patient class-permuted negative control

Table 2. Statistical validation against patients in the brain HIV
envsequence dataset of all HAD and non-HAD signatures
generated by the PART algorithm.

Signature Diagnosis Patient Count:
Matching
Patients: p-value

Total (HAD/None)HAD non-HAD

1_01 * HAD 77 (39/38) 10 0 1.0E-03

1_02 * non-HAD 77 (39/38) 1 9 6.8E-03

1_03 * non-HAD 77 (39/38) 2 8 0.047

1_04 * HAD 77 (39/38) 18 1 7.5E-06

1_05 non-HAD 77 (39/38) 7 12 0.19

1_06 non-HAD 51 (31/20) 11 5 0.54

1_07 * non-HAD 77 (39/38) 9 23 1.2E-03

1_08 HAD 77 (39/38) 34 33 1

2_01 * HAD 77 (39/38) 9 1 0.014

2_02 * non-HAD 76 (38/38) 0 9 2.3E-03

2_03 * HAD 77 (39/38) 14 2 1.4E-03

2_04 * non-HAD 70 (33/37) 9 20 0.030

2_05 * HAD 76 (38/38) 25 4 1.0E-06

2_06 non-HAD 49 (30/19) 13 8 1

2_07 non-HAD 77 (39/38) 4 8 0.22

2_08 non-HAD 77 (39/38) 18 16 0.82

2_09 HAD 77 (39/38) 12 5 0.098

2_10 non-HAD 77 (39/38) 23 25 0.64

The statistical significance of all HAD and non-HAD signatures was determined
using Fisher’s exact test to evaluate the distribution of patients in the brain
dataset with matching sequences. Diagnosis indicates whether the signature
was predictive of HAD or non-HAD. Patient count reflects the total number of
patients with sequence spanning the amino acid positions in the relevant
signature (i.e. signature 1_01 was tested in 77 patients because 1 patient does
not contain sequences spanning positions 304 through 343, which are included
in signature 1_01). The number of HAD and non-HAD patients from the brain
dataset, containing sequences matching each signature are given, followed by
the p-value of that patient distribution, calculated by Fisher’s exact test.
* = p-value ,0.05.
doi:10.1371/journal.pone.0049538.t002

Figure 3. Amino acid positions identified in each HAD
signature. Amino acid positions are plotted for each HAD signature
against a schematic of the HIV C2-V3-C3 region examined. Shannon
entropy values of all positions in the alignment are plotted as a bar
graph, with colored bars marking positions included in HAD signatures.
doi:10.1371/journal.pone.0049538.g003
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described above. This test identified no signatures with p-values

,0.05 (data not shown), indicating that the significant p-values we

observed are unlikely due to applying Fisher’s exact test against

our training dataset.

Figure 4. Amino acid identity and biochemical factor require-
ments for HAD signatures. Amino acid requirements at each
position are plotted. For each ‘‘position: factor’’ pair, all amino acids are
plotted at their value for that factor. Amino acids observed at that
position within the brain-derived dataset are plotted in black, while
those not observed are gray. The B-clade consensus amino acid is
plotted in large font. The colored bar indicates the range of acceptable
values in that signature. Lower range ends are open, indicated by a
dotted line, (signature 1_01, position 328 excludes Q). Upper range
ends are closed, indicated by a solid line (signature 2_03, position 321
includes S).
doi:10.1371/journal.pone.0049538.g004

Figure 5. Amino acid distributions at individual positions are
not correlated with HAD. A. Amino acid frequencies in the brain
dataset plotted as distributions totaling 100% for each class (HAD, non-
HAD). The weights of individual sequences are normalized by patient
sequencing depth. B. Percentage of sequences of each class (HAD, non-
HAD) matching the amino acid requirements of signature 1_04 at each
position individually, and for the complete signature. Bars represent
only matching sequences and thus do not sum to 100%.
doi:10.1371/journal.pone.0049538.g005
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Because initial analysis during cross-validation indicated that

HAD signatures alone were the best predictor of patient class, we

focused further analysis on the 5 HAD signatures that showed

significant association with HAD diagnosis by Fisher’s exact test.

Most of these signatures consisted of amino positions in the tip of

the V3 loop and pairs of positions, approximately equidistant on

either side of the tip of the V3 loop, spanning the C2-V3-C3

region (Figure 3). Shannon entropy was calculated for amino acid

positions across the region analyzed. Signatures included both

high and low entropy positions, demonstrating no clear bias by

entropy. Examining the rules comprising each signature revealed

that the amino acid requirements could consist of a combination of

single amino acid identities, groups of amino acids, and larger

amino acid sets (Figure 4 and Figure S1). Given the amino acids

observed within the dataset, many of these larger amino acid sets

effectively exclude a single amino acid. For example, within

Figure 6. Proportion of sequences per patient from the brain dataset matching HAD signatures. For each HAD signature, HAD (red) and
non-HAD (blue) patients are plotted according to their total number of sequences (x-axis) and the number of sequences matching the signature (y-
axis). Patients with no matching sequences are omitted from the plot for clarity, but are included for statistical calculations. Dashed line indicates
slope = 1 at which all sequences in a patient match signature. Jitter has been added to visualize overlapping points. Text indicates p-value by Fisher’s
exact test and the number of patients from each class with matching sequences.
doi:10.1371/journal.pone.0049538.g006
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signature 1_01 position 328 includes a large range of amino acids

based on size, which can be interpreted as a ‘‘not-Q’’ requirement.

Unexpectedly, the amino acid distributions at individual positions

did not demonstrate significant bias by HAD diagnosis (Figure 5).

For example, the individual positions comprising signature 1_04

(290, 315, and 343) show only minor amino acid bias between

HAD and non-HAD patients. Additionally, at each position the

sets of amino acids from signature 1_04 show only a minor bias

between HAD and non-HAD patients. KER at position 343 shows

no significant bias and E at position 290 and SKAG at position

315 each have a p-value ,0.05, but are not strongly associated

with HAD. Instead, these positions only correlated to HAD

diagnosis when combined into the overall signature.

To better understand the distribution of each signature within

patients, we visualized the proportion of sequences in each patient

matching each of the significant HAD signatures (Figure 6 and

Figure S2). Patients with no matches were omitted from the

visualization for clarity, but were included in the statistical analysis

with Fisher’s exact test. Signatures had a strong bias to uniquely

match sequences derived from either HAD patients (Figure 6) or

non-HAD patients (Figure S2). In addition to being highly

discriminatory for patient class, matching sequences appear to

have expanded nearly to fixation within patients. For most patients

with sequences matching a signature, all or nearly all sequences

were matching. Depth of patient sequencing seemed to have little

effect on the likelihood of patient matches to a signature. In most

cases, the proportion of matching sequences remained similar

across patients with differing sequencing depth.

Sets of signatures can contain unique or overlapping amino acid

positions and requirements, raising the possibility of individual

sequences matching multiple signatures. To examine the propen-

sity of sequences to match multiple signatures, we visualized

individual sequences across all signatures (Figure 7). Several

sequences matched 3 signatures; however, most sequences

matched two or fewer signatures.

Evaluation of Signatures in Two Independent Non-brain
Datasets

To assess these signatures in HIV env sequences from an

independent cohort of patients, we assembled two validation

datasets. The first consisted of virus sampled from the brain of 10

independent HAD patients (Table 1B and Table S1B). This

dataset allowed us to empirically observe the occurrence of HAD

signatures in sequences from the brain of an independent cohort,

albeit one of insufficient sample size for statistical assessment, and

containing only HAD patients (Figure 8). For most patients in this

set, the majority or all sequences matched a HAD signature. For

patient 7766, all 25 sequences matched signatures 2_01 and 2_05.

All sequences from patients 47, 55 and 60 matched signatures

1_01, 2_05 and 2_03, respectively, though each of these patients is

represented by only 1 or 2 sequences. Finally, the majority of

sequences from patients E21, 6568 and CA110 matched

signatures 1_04 and 2_05. Thus, 8 of 10 HAD patients from an

independent cohort had 50% or greater sequences matching a

HAD signature.

The second validation set consisted of virus sampled from the

CSF of patients clinically assessed for HAD diagnosis. In this case,

we utilized CSF-derived virus as a surrogate for virus replicating in

the brain, based on phylogenetic evidence that brain and CSF-

derived virus are more closely related to each other than to non-

CNS tissue sites [6]. The CSF-derived validation dataset consisted

of 393 HIV env sequences cloned from the CSF of an independent

cohort of 41 patients (Table 1 and Table S1C). 30 patients had

reported CD4 T cell counts (median 147 cells/mL; range, 13–592),

of which 23 had advanced disease (defined as current or nadir

CD4 count ,200). Patient CD4 counts, AIDS progression, and

treatment histories were matched as closely as possible to patients

in the brain-derived dataset and all virus was clade-B. HIV in the

CSF can originate either from the brain or from blood and

lymphoid tissues. Early in infection, virus in the CSF appears

predominately blood and lymphoid-derived [94]; during late

infection, phylogenetic analysis demonstrates that CSF virus is

more closely related to virus replicating in the brain [69,73,95]. To

increase the probability that the validation dataset was more likely

brain-derived, we included only patients for which CSF-derived

virus was genetically compartmentalized from virus sampled from

non-CNS sites as determined by the Slatkin-Maddison test

(p,0.05). Testing significant HAD signatures identified from the

brain-derived dataset against sequences from the CSF demon-

strated that HAD signatures 1_04 and 2_03 were predominantly

matched by CSF virus from HAD patients (Figure 9A). Signature

1_04 matched 7 HAD and 2 non-HAD patients, and signature

2_03 matched 5 HAD and 1 non-HAD patient (Figure 8B),

however, because of the small and unequally distributed number

of patients in this dataset, these distributions did not reach

statistical significance. Additionally, between brain and CSF

derived datasets, sequences matching these signatures had similar

diversities of amino acids (Figure 8C). Signature 1_04 requires

ASK or G at position 315, matching sequence from the brain

contains ASK and G, and matching sequence from the CSF

contains AS and K.

Discussion

Here we developed a method of applying machine learning

tools to identify genetic signatures in viral pathogen genomes

correlated to disease outcome, in this case the development of

HIV-associated dementia. Our method expands the flexibility and

biological relevance of the analysis by including numeric factors

Figure 7. Distribution of matching sequences across HAD signatures. Visualization of sequences (x-axis) matching HAD signatures (y-axis).
Colored bars on top of the x-axis indicate HAD (red) or non-HAD (blue) diagnosis of the patient from which the sequence was sampled. Sequences
are clustered by their pattern of signature matches.
doi:10.1371/journal.pone.0049538.g007
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describing amino acid biochemical properties. We applied this

method to the C2-V3-C3 region of the HIV env gene and

identified 5 HAD signatures correlated to the presence of

dementia. We evaluated these signatures in two independent

datasets, and observed HAD signatures in the majority of brain-

derived env sequences from 8 of 10 patients with dementia, and

validated 2 signatures in HIV env sampled from the CSF. This

work demonstrates that our machine-learning pipeline can identify

biologically relevant genetic signatures in a noisy, real-world

dataset of sequences from a rapidly evolving viral pathogen.

The identified amino acid signatures recapitulate and expand

on previously published amino acid variants associated with HAD.

Dunfee et al. 2006 reported that the N283 variant was present at

high frequencies in virus from the brain of HAD patients, and

increases gp120 affinity for CD4, enhancing replication in

macrophages and microglia [71]. HAD signature 2_05 requires

a polar, hydrophilic amino acid at position 283, which includes N,

the most polar amino acid observed in that position in the brain

dataset, as ranked by Atchley Factor I. Non-HAD signature 2_02

requires a V at position 283, the least polar most hydrophobic

amino acid observed at that position in the brain dataset. Power

Figure 8. Validation of HAD signatures against brain-derived env sequences from an independent cohort. A total of 75 brain-derived
sequences from 10 independent patients (x-axis) are visualized as matching or not matching each HAD signature (y-axis). All patients in the
independent cohort were diagnosed with HAD. One sequence has been omitted from patient E21 because phylogenetic mapping from the original
publication indicated it might be a blood-derived contaminant. A second sequence in E21, matching no HAD signatures, was of indeterminate
compartment of origin, and was retained.
doi:10.1371/journal.pone.0049538.g008
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et al. 1994 reported positions 305 and 329 correlated to HAD

[56]; when converted to HXB2 numbering, these correspond to

positions 308 and 333. At position 308, H was HAD associated,

whereas P was non-HAD associated. Position 308 occurs in HAD

signatures 2_01 and 2_05, in both cases requiring small amino

acids. H is slightly smaller than P by Atchley Factor 3. Signature

2_05 includes H and excludes P, while signature 2_01 includes

both, excluding larger amino acids. Position 333 was not identified

in signatures; however, neighboring position 334 is found in

signature 2_05. Pillai et al. 2006 identified positions 300, 304, 308,

and 314 as associated with CSF versus blood, and S at position

300 in CSF virus associated with HAD [18]. Positions 304 and 308

were each included in several signatures we identified. Position

314 was not included, however, flanking positions 313 and 315

were found across 4 signatures. This also highlights one advantage

to our approach; in addition to identifying positions with clear

amino acid biases, we also identify linked sets of positions, only

correlated when considered together.

Examination of the observed signatures within the structure of

the HIV env protein suggests how these amino acids may interact

within the three-dimensional structure of the active protein. The

env V3 region consists of a stem-loop structure formed by amino

acid positions 296 through 330, with positions 312 to 315 forming

the tip of the loop. Most signatures incorporate a central position

at the V3 loop tip flanked by pairs of equidistant positions on the

stem, in agreement with previous work finding that covarying

positions in V3 tend to bridge opposite strands of the V3 loop [19–

21]. Signature 2_01 includes positions 308 and 317, previously

described as linked [19], and signatures 2_03 and 2_05 contain

other nearby positions (307 or 308, paired with 317 or 319). Other

signatures follow a similar structural pattern, in some instances

bridging greater distance between sites. Signature 1_01 includes

positions 304 and 328, and signature 1_04 includes 290 and 343 in

the C2 and C3 regions. Additionally, clusters of several positions

appear to define important regions within the protein linked to

HAD phenotype. Positions 343–344 occur in three HAD

signatures, and positions 307–308 and 317–319 occur in three

HAD signatures. Notably absent are positions in the conserved

base of the V3 loop, (positions 298–303, and 322–327) [96–98],

which is involved in interactions with the CCR5 coreceptor [99].

The amino acid properties required at each position may also

begin to define functional requirements within the protein.

Signatures 2_01 and 2_05 require low molecular size and low

secondary structure at positions 307 and 308, while signature 2_03

requires isoleucine at position 307, which would also satisfy the

size and secondary structure requirements of 2_01 and 2_05.

These signatures also require hydrophobic, nonpolar residues with

high pI and charge at positions 317–319.

Interpreting mechanistic implications of these signatures

requires consideration of viral replication dynamics and how this

Figure 9. Validation of HAD signatures against CSF-derived sequences from an independent cohort. A. Visualization of 393 CSF-derived
sequences from 41 independent patients matching HAD signatures. Conventions are the same as in Figureô 7. B. Proportion of patients with CSF-
derived sequence matching signature 1_04 and signature 2_03. Conventions are the same as in Figureô 6. C. Amino acid diversity in sequences
matching signature 1_04 and signature 2_03. Left column: amino acid requirements in the signature. Middle and right column: amino acids observed
in matching sequences from the brain and from CSF.
doi:10.1371/journal.pone.0049538.g009
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could influence development of HAD. Low nadir CD4 counts and

high baseline plasma viral load increase the risk of developing

neurocognitive impairment in treatment-naı̈ve patients [48] and

suppressive HAART is protective, particularly against the more

severe forms of HAD [27,30,34]. Nonetheless, brain atrophy can

be detected by neuroimaging even in patients with well-controlled

viral replication [26]. Though these results suggest an association

with disease progression, HAD appears more closely linked to

other mechanisms including chronic viral replication in the brain

and activation of CNS macrophages and microglia. Previous

reports have shown that HAD is associated with increased viral

genetic compartmentalization in CSF compared to non-CNS

tissues, suggesting that CSF viral sequences are derived from

unique viral populations replicating within the brain [69,73,100].

The signatures we identified may be directly or indirectly related

to these changes in CNS replication dynamics. In the first case,

amino acid changes in the signatures may enhance HIV

interactions with CD4 and/or CCR5, thereby increasing viral

entry and replication in macrophages, viral replication in the

brain, and/or neurotoxicity, possibly via increased immune

activation or activation of chemokine receptors

[58,60,61,66,69,101–106]. Alternatively, signatures linked to

HAD may reflect specific viral adaptations driven by host selection

pressures, such as humoral or cellular immune responses targeting

specific viral epitopes, that may differ between HAD and non-

HAD patients. Further studies are needed to investigate these

potential links between viral genetics and susceptibility to HAD.

Examination of the frequency of the identified signatures across

patients showed that for most signatures, all or nearly all brain-

derived viral sequences from a matching patient matched the

signature. Most patients were sampled at autopsy with late-stage

AIDS, allowing viral mutations conferring a selective advantage to

expand to a majority variant. Further study incorporating

sampling at earlier time points, for example longitudinal CSF

samples with a brain sample obtained at autopsy, would better

describe the dynamics of the emergence of viral genetic signatures

and their role in development of HAD. Examining the pattern of

matching sequences across signatures demonstrated that the

dataset did not contain broadly matching viral sequences

(Figure 7). Instead, we observed that sequences predominantly

matched a small number of signatures, suggesting that the dataset

consists of distinct subpopulations.

The method employed by the PART algorithm, iteratively

generating a signature then removing sequences matching that

signature, additionally has the potential to reveal interesting

substructures within the dataset. In this study, we were interested

in the distribution of signatures across all sequences in the dataset.

However, we also performed a layered analysis by Fisher’s exact

test, mirroring the PART algorithm by sequentially analyzing each

signature and removing each sequence once it matches a signature

(data not shown). By this approach we observed two additional

HAD signatures, 1_08 and 2_09, with p-values ,0.05 (Figure S1).

These two signatures both demonstrated a dramatic shift in patient

distribution between the independent and layered analysis.

Evaluated independently, signature 1_08 was found in 34 HAD

patients and 33 non-HAD patients (39 HAD and 38 non-HAD

patients total), whereas by a layered approach, signature 1_08 is

found in 16 HAD patients and 0 non-HAD patients (17 HAD and

5 non-HAD patients total). HAD signature 1_08 is relatively

promiscuous alone, matching sequences from both HAD and non-

HAD patients. However, the majority of non-HAD sequences

matching 1_08 also match non-HAD signatures 1_02, 1_03, 1_05

and 1_07. When signatures are considered sequentially, removing

sequences matching earlier signatures, the remaining 1_08

matching sequences are uniquely from HAD patients. This

suggests that the amino acid changes in signatures 1_08 and

2_09 may represent a sub-pattern in the dataset, only linked to

HAD in the absence of dominant changes from earlier signatures.

Though further work is required to support these conclusions, this

effect illustrates the power of the PART algorithm to uncover

subsets of structure within the dataset.

We acknowledge some limitations of the study. As with any

machine learning-based work, overfitting (training a classifier on

random noise instead of true features correlated to outcome) is a

concern we sought to address throughout study design. The C4.5

algorithm was selected in part because it incorporates a pruning

step designed to remove overfit decision tree branches. The

genetic relatedness of sequences within a patient was addressed by

weighting individual sequences to normalize patients by sequenc-

ing depth. Finally, leave-one-out cross-validation generating

independent training and testing sets and class-permuted negative

controls were used to test for overfitting. Ideally, a machine

learning analysis would initially divide the dataset into well

balanced training and test sets. In this case, however, though 78

patients represents a dataset of unprecedented size in the field, it

was not of sufficient size to split for data mining, requiring the use

of cross-validation methodologies. We were, however, able to

assemble an independent test set of 10 HAD patients, in which we

validated the predictive power of these signatures.

Application of this pipeline to larger datasets, either from other

viral pathogens or by expanding the number of HIV samples

available, will allow more traditional splitting into training and test

sets and increase the power of the analysis to reveal subtle patterns

in the dataset. We focused our analysis on the C2-V3-C3 region of

env, in part because of its biological relevance, but also because this

region contained the best sequencing coverage. However, our

method is also well suited to analysis of data sets with wider

sequencing. Indeed, the iterative signature generation we utilized

can be applied to identify genetic signatures across a large span of

genetic sequence.

Application of modern sequencing technologies has facilitated

the assembly of large datasets of viral pathogen sequences from

clinical samples. As the depth and power of these datasets expands,

the challenges of analyzing clinically-derived data from rapidly

evolving viral pathogens across multiple hosts also increases. To

fully utilize these datasets, it is imperative to design analysis

techniques that can address these challenges in an efficient and

robust manner. We developed a technique that uses validated data

mining tools that give us the flexibility and power to increase the

dimensionality of our analysis and mine the biochemical properties

represented by amino acid identities. This method represents a

significant advance in the ability to identify clinically important

genetic signatures from sequence data sets. Its application to a

variety of viral pathogens will lead to greater understanding of

host-pathogen interactions. Applying this technique to HIV env

sequences from the brain allowed us to identify genetic signatures

correlated with the development of HAD. Examining the amino

acid and biochemical requirements of these signatures will inform

further investigations into mechanisms driving the development of

HAD, with the goal of developing better diagnosis tools and

treatment regimens. Further development and application of this

analysis pipeline also has broader applications for the identification

of genetic signatures linked to clinical outcome in other viral

pathogens.
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Supporting Information

Figure S1 Amino acid identity and biochemical factor
requirements for HAD and non-HAD associated signa-
tures. Amino acid requirements at each position in HAD and

non-HAD associated signatures are plotted. For each ‘‘position:

factor’’ pair, all amino acids are plotted at their value for that

factor. Amino acids observed at that position within the brain-

derived dataset are plotted in black, while those not observed are

gray. The B-clade consensus amino acid is plotted in large font.

The colored bar indicates the range of acceptable values in that

signature. Lower range ends are open, indicated by a dotted line,

(signature 1_01, position 328 excludes Q). Upper range ends are

closed, indicated by a solid line (signature 2_03, position 321

includes S).

(PDF)

Figure S2 Proportion of sequences per patient from the
brain training dataset matching HAD and non-HAD
signatures. For each signature, HAD (red) and non-HAD (blue)

patients are plotted according to their total number of sequences

(x-axis) and number of sequences matching the signature (y-axis).

Patients with no matching sequences are omitted from the plot for

clarity, but are included for statistical calculations. Dashed line

indicates slope = 1 at which all sequences in a patient match

signature. Jitter has been added to visualize overlapping points.

Text indicates p-value by Fisher’s exact test and the number of

patients from each class with matching sequences.

(PDF)

Table S1 Patient details for the brain training, brain validation,

and CSF validation HIV env sequence datasets. All annotations are

drawn from the original publication, or from the HIV Brain

Sequence Database, which drew annotations from the original

publication. Blanks indicate data not available.

(XLSX)
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