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Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain, 6 Irsicaixa AIDS Research Institute-HIVACAT, Hospital University Germans Trias I Pujol, Badalona, Spain,

7 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland, 8 Massachusetts General Hospital and Harvard

Medical School, Boston, Massachusetts, United States of America, 9 The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America, 10 Howard

Hughes Medical Institute, Chevy Chase, Maryland, United States of America

Abstract

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a
rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-
throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and
variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to
comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of
early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune
selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these
low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape
mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral
genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de
novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low
frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided
with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of
effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1
replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral
adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data
support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in
order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
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Introduction

A major challenge to the development of effective vaccines

against highly variable viruses is their ability to adapt to evade host

immune responses [1–4]. During HIV-1 infection, for example,

immune escape mutations develop which impair the ability of both

CD8+ T cell responses and neutralizing antibodies to maintain

immune control [5–9]. However, some CD8+ T cell escape

mutations have been shown to dramatically impair viral

replication capacity, which may slow viral escape and contribute

significantly to the ability of some responses to effectively control

HIV-1 [10–13]. The outcome of this dynamic interplay between

immune responses functioning to eliminate infected cells, emerg-

ing escape variants that evade these responses, and the impact of

these variants on viral replication, critically influences early

immune control of HIV-1.

The majority of studies on HIV-1 evolution have relied on bulk

Sanger sequencing to define the major genetic variants that arise

during infection. These studies have demonstrated that upwards of

50% of mutations observed over the course of infection may be

associated with viral adaptations to CD8+ T cell responses [5,14].

Unfortunately, bulk Sanger sequencing is insufficient to detect low

frequency variants that are particularly important during the acute

phase of infection when viral escape occurs rapidly. The

application of single genome amplification and sequencing (SGA

or SGS) has increased the sensitivity for detecting and quantifying

low frequency viral variants [7,15,16] but high cost and poor

scalability limit its broader application. As a result, a sensitive and

comprehensive understanding of the genetic pathways and kinetics

of viral adaptation to acute phase immune selection pressures

across the entire HIV-1 genome, likely a critical determinant of

the success or failure of both natural and vaccine-elicited immune

responses, is lacking.

Next-generation sequencing (NGS) or deep sequencing ap-

proaches such as 454 pyrosequencing [17] have the potential to

transform the study of HIV-1 and other highly variable pathogens

by providing a rapid and cost-effective approach for the sensitive

characterization of the complex and rapidly evolving intra-patient

viral quasispecies. Recent studies have applied deep sequencing

approaches to HIV-1 and SIV to detect low frequency drug

resistance variants [18–22] and CD8+ T cell escape variants [23–

26], although these studies have largely been limited to the analysis

of discrete regions of interest. Here we report an approach for

routine whole genome sequencing of HIV-1 that combines deep

sequencing with novel algorithms for de novo sequence assembly

and for accurate quantification of low frequency viral variants.

This new platform not only provides the capacity to rapidly

sequence across the whole HIV-1 genome for population-scale

genetic analyses of large cohorts of HIV-1 infected individuals, but

also the sensitivity to comprehensively characterize the earliest

stages of viral immune adaptation during the critical initial

interactions with the host immune response. The application of

this whole genome deep sequencing platform to longitudinal

samples from a single subject during acute HIV-1 infection reveals

the speed and complexity of the simultaneous adaptation of HIV-1

to multiple host immune responses, and suggests that early, low

frequency escape variants to dominant acute-phase CD8+ T cell

responses may have a significant impact on the early immune

control of HIV-1.

Results

Whole HIV-1 genome sequencing and assembly using
454 pyrosequencing

Prior studies utilizing deep sequencing to more critically

examine HIV-1 and SIV sequence diversity and evolution have

focused predominantly on short, specific regions of the virus where

evolution was known or expected to occur. To apply a deep

sequencing approach that can interrogate diversity across the

complete genome we designed primers that amplify four

overlapping PCR amplicons spanning the entire protein-coding

region of the HIV-1 genome (HXB2 nt 779–9551; Figure 1A)

and validated them against a set of 89 HIV-1 clade B (HIV-1B)

clinical samples from subjects in the acute and chronic phase of

infection, as well as low-viremia controllers (Table S1 in Text
S1). To reduce costs, we pooled the four amplicons from each

individual sample prior to acoustic shearing and subject-specific

molecular bar-coding, and then batched bar-coded samples from

multiple subjects prior to performing emulsion PCR and

pyrosequencing.

In contrast to traditional Sanger sequence data, the 454

sequence data provides deep read coverage (sequencing reads

per site) where each individual base and the context in which it

occurs in the read can be leveraged to inform the consensus

assembly. As such, we developed AssembleViral454 (AV454), a

module in the ARACHNE17,18 assembly tool kit (see Supplemen-

tary Methods in Text S1), which takes advantage of deep

sequence coverage and the knowledge that continuous RNA viral

genomes do not generally contain large repetitive sequences to

correctly assemble all reads. As shown in Figure 1B, AV454

consensus assemblies captured on average 96.3%611.3% (s.d.;

n = 89) of patient-specific reads into a single contig (Table S1 in

Text S1), significantly outperforming the other assemblers. While

both AV454 and Newbler captured .98% of the target genome by

all contigs assembled, AV454 captured a significantly greater

percentage of the genome in a single continuous contig than any

other assembler (see Supplementary Methods in Text S1;

Wilcoxon, p,0.001, n = 67) and exhibited a much tighter

distribution of results. These data demonstrate the ability of this

sequencing and assembly strategy to reproducibly generate

Author Summary

The ability of HIV-1 and other highly variable pathogens to
rapidly mutate to escape vaccine-induced immune re-
sponses represents a major hurdle to the development of
effective vaccines to these highly persistent pathogens.
Application of next-generation or deep sequencing
technologies to the study of host pathogens could
significantly improve our understanding of the mecha-
nisms by which these pathogens subvert host immunity,
and aid in the development of novel vaccines and
therapeutics. Here, we developed a 454 deep sequencing
approach to enable the sensitive detection of low-
frequency viral variants across the entire HIV-1 genome.
When applied to the acute phase of HIV-1 infection we
observed that the majority of early, low frequency
mutations represented viral adaptations to host cellular
immune responses, evidence of strong host immunity
developing during the early decline of peak viral load.
Rapid viral escape from the most dominant immune
responses however correlated with loss of this initial viral
control, suggestive of the importance of mounting
immune responses against more conserved regions of
the virus. These data provide a greater understanding of
the early evolutionary events subverting the ability of host
immune responses to control early HIV-1 replication,
yielding important insight into the design of more
effective vaccine strategies.
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genome-wide sequence assemblies from a wide variety of different

HIV-1B clinical isolates.

Development of novel algorithms to accurately detect
low frequency variants

A major challenge to the utility of deep sequence data is

distinguishing true genetic polymorphisms from process errors

[22,23,26,27]. We addressed this problem by developing an

analysis pipeline designed to: (i) maximize the read data retained

for analysis, (ii) optimize read alignments, and (iii) leverage phase

information to improve the sensitivity and specificity of variant

calling. First, all read alignments are made to the sample’s AV454

consensus assembly. A comparison of read alignments to the

AV454 de novo assembly versus an HIV-1B reference sequence

demonstrated that use of the AV454 assembly retained more reads

and bases for analysis and significantly reduced the number of

insertions and deletions that result in alignments with frame shifts

(Table S2 in Text S1; Wilcoxon, p,0.0001), an important

consideration for variant calling. Second, ReadClean454 (RC454)

applies a Neighborhood Quality Standard (NQS) base filter [28],

corrects reads for common process errors such as homopolymer

and carry-forward-incomplete-extension (CAFIE) miscalls (see

Supplementary Methods and Figure S1 in Text S1), and further

optimizes read alignments using coding frame information. As

shown in Figure 1C, RC454 significantly reduces the average

process read error rate from 1.361022 to 0.561024 errors per

base as determined by the sequencing of infectious HIV-1 clones.

Next, V-Phaser distinguishes true variants from sequencing errors

by defining the frequency at which a nucleotide polymorphism

must be observed to be considered a true variant. This is

accomplished through the application of an error probability

model initially defined by a uniform empirical process read error

Figure 1. PCR amplification strategy and performance of novel assembly, read alignment, and variant detection algorithms. (A) PCR
amplification strategy using four ,3.2 kb amplicons spanning gag through nef of the HIV-1 genome. Amplicons were then pooled, sheared,
barcoded by patient or time point, and batched for library construction and single-molecule 454 pyrosequencing. (B) AssembleViral454 v1.0
outperforms other algorithms in its ability to assemble de novo continuous consensus contigs that span the complete target region. Results are
shown for 67 acute, chronic, or controller patient samples that had successful amplification of all four amplicons and at least 10-fold sequence
coverage (sequencing reads per site) across .70% of the target genome. Black lines denote the mean score for each assembler, red line the median,
red box ends the 25th and 75th quantiles, and red box whiskers the upper and lower quartiles plus/minus 1.5 times the interquartile range,
respectively. (C) ReadClean454 v1.0 corrects for read alignment errors due to various sequence error modes and significantly reduces process error
rate. Results shown are for virus from two infectious clones, NL43 (WT) and NL43 (RKLM) containing two point mutations in Gag [10], sequenced
independently to 417- and 189-fold average coverage, respectively. Errors are defined as base calls or InDels that differ from the assembled
consensus at a given position, and the read error rate is the total number of errors per total number of NQS passing bases interrogated. Percentage of
reads on which a correction was made at each step are shown in parentheses. A final average process error rate of 0.561024 was achieved based on
both infectious clones. (D) V-Phaser v1.0, utilizes phasing information to identify a variant pair found in 1.0% of the reads covering both loci when
there are 200 such reads; without phase, a three-fold increase in coverage is required to achieve the same 1.0% detection threshold. A variant at a
frequency of 0.1% can be detected when phased coverage is 2999-fold.
doi:10.1371/journal.ppat.1002529.g001

Deep Sequencing of HIV-1
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rate and then refined by the inclusion of variant nucleotide

phasing information i.e. correlated sequence changes (see

Supplementary Methods in Text S1; Macalalad et al, manuscript

submitted). Lastly, V-Profiler calculates the frequency of each triplet

codon composed of nucleotides accepted by V-Phaser. When

applied to samples of known composition, this pipeline quantified

variants with high sensitivity (100%) and specificity (97%), and

implementation of the phasing-based approach achieved detection

of 1.0% variants when $200-fold shared sequence coverage

(sequencing reads per site) was attained; this represents a three-fold

decrease in required coverage over non-phase based methods;

Figure 1D; see Supplementary Methods in Text S1). The

application of these algorithms provides the ability to rapidly

characterize intra-patient HIV-1 genetic diversity, and facilitate

the routine handling of deep sequencing data for whole genome

assembly and variant detection, as shown in Figure S2 in Text
S1 for all HIV-1 proteins from the array of 89 HIV-1B clinical

samples.

Benchmarking of 454 sequencing to traditional cloning
and SGA

The whole HIV-1 genome 454 deep sequence platform was

validated by comparison to bulk Sanger sequencing, cloning and

sequencing, and SGA. First, we compared full length consensus

HIV-1 sequences for four longitudinal samples from a single

subject (9213) generated by bulk Sanger sequencing and by the

454 platform (35,093 total nucleotides compared; see Supplemen-

tary Results in Text S1). Overall, the Sanger and 454 consensus

sequences differed at only six nucleotides and one insertion/

deletion (InDel), and in each case the discrepancy resulted from a

differential consensus call at a highly polymorphic position (Table
S3A and S3B in Text S1). Next, we extensively compared

variant quantification across a highly variable 1544 nucleotide

region spanning from vif to tat in a single sample (subject 9213) by

deep sequencing (average 566-fold high quality sequencing reads

per site), traditional PCR cloning and sequencing (768 clones), and

single genome amplification (87 single genomes). We observed

95.6% concordance between the three methods in the detection of

invariant/variant sites (see Supplementary Results in Text S1),

and the calculated variant frequencies were highly correlated

between methods as shown for deep sequencing vs cloning and

sequencing in Figure 2. These data confirm the ability of this

high-throughput, deep sequencing platform to profile HIV-1

quasispecies diversity as accurately as conventional cloning and

sequencing or SGA.

Characterization of whole HIV-1 genome evolution
during acute infection

Recent studies utilizing deep sequencing to more sensitively

assess early, low frequency variants within specific CD8 epitopes

reveal that viral escape from CD8+ T cell responses can occur very

rapidly [23,25,26], even as soon as 17 days following SIV infection

of macaques [23]. To further explore the dynamics of HIV-1

evolution and immune adaptation during acute infection, we

conducted a comprehensive and sensitive assessment of early viral

evolution, without bias towards previously studied epitopes, by

producing longitudinal genome-wide 454 sequence data from

longitudinal samples from a single subject identified as HIV-1

infected prior seroconversion. Subject 9213 presented with a

baseline viral load of 9.3 million copies/ml (day 0 post-

presentation) that peaked at 21 million copies/ml on day 3

(Figure 3A). A negative Western blot on day 0 supported likely

infection within 15–20 days of first sampling, i.e. Fiebig stage II–

III [29]. We captured genetic diversity data for the entire open

Figure 2. Comparison of sequence variant quantification by
454 deep sequencing and by PCR cloning/sequencing. Orthog-
onal regression of variant frequency estimates obtained by 454 and
clonal sequence data across the highly variable 1544 nucleotide region
spanning Vif to Tat in subject 9213 (slope = 1.01; 95% CI, 0.73 to 1.40).
doi:10.1371/journal.ppat.1002529.g002

Figure 3. Clinical course and whole genome deep sequence
coverage for subject 9213. (A) Clinical course of infection in subject
9213 shown as days post-presentation. Plasma viral load (copies/ml) is
shown in red and CD4+ T cell count (cells/ml) in blue. Estimated acute/
early Fiebig stages are shown and arrows indicate time points
sequenced on the deep sequencing platform. (B) High-quality
sequencing reads per site across the HIV-1 genome for subject 9213
at six time points (days post presentation). Reads are aligned to the
consensus assembly of their respective time point using Mosaik v1.0
(Table S9 in Text S1) and coverage (sequencing reads per site)
calculated from bases that pass the defined Neighbor Quality Standard
(NQS, see Supplementary Methods in Text S1) [28]. PCR amplicon
locations are denoted by horizontal bars under the x-axis.
doi:10.1371/journal.ppat.1002529.g003
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reading frame of HIV-1 at six time points over the first 4 years of

infection (day 0, 3, 59, 165, 476, 1543) at an average number of

sequencing reads per site of 5356325 reads (Figure 3B, Table
S1 in Text S1). Codon diversity, defined as the frequency of

codons that differed from the consensus codon at baseline (day 0),

was calculated for each position of the HIV-1 proteome. As

illustrated in Figure 4A and 4B, there was strikingly little codon

diversity present in the viral population during peak viremia, with

less than 2% and 5% of all positions exhibiting detectable diversity

at day 0 and day 3, respectively, and of those positions that did

vary the majority varied by less than 2%. The low genetic diversity

of the viral quasispecies during early acute infection, which would

not have been discernable using traditional bulk sequencing

approaches, confirms that infection in this subject was founded by

a single genetic lineage, in line with recent reports suggesting that

most sexually transmitted HIV-1 infections arise from a single

founder virus [15,16,30–33].

Early HIV-1 evolution is associated with immune
adaptation

The first evidence of HIV-1 evolution was observed at day 59,

when 11% of all codons exhibited detectable diversity

(Figure 4C). However, still only a minor subset of 21 codons

exhibited any substantial (.10%) degree of variation from baseline

at this time point when peak viral loads were observed to

dramatically decline to 298,000 copies/ml (Figure 3A). Although

as expected the number of evolving codons continued to increase

over time, with 38 exhibiting detectable diversity at day 165

(Figure 4D), it is notable that over half of the day 59 sites

exhibiting substantial variation (.10%) declined in variation by

day 165 (Figure 5). These data reveal complexities in the early

evolution of the viral quasispecies that are not typically observed

by traditional sequencing methods. Moreover, as shown in

Figure 5 even by day 165 no single codon had yet mutated

towards fixation (.95%), suggesting that the substantial early

decline in peak viremia in subject 9213 was not associated with

any dramatic turnover of the viral population.

Given that CD8+ T cell responses represent a major driving

force of viral evolution following acute HIV-1 infection [5,7,34],

we examined the extent to which these early, low frequency

mutations might represent viral adaptation to cellular immune

responses. Here we compared amino acid divergence from

baseline within described CD8+ T cell epitopes restricted by

subject 9213’s HLA alleles to the amino acid divergence at all

Figure 4. Rapidly expanding sequence diversity during HIV-1 infection. Heat maps illustrate sites exhibiting amino acid sequence diversity
at days 0, 3, 59, 165, 476 and 1543 post-presentation. Plotted is the percentage of amino acid diversity at each position with respect to the dominant
baseline (day 0) amino acid residue. All 3174 amino acids of HIV-1 are represented, with the first amino acid of Gag located in the top left corner of
the grid and the last amino acid of Nef located in the bottom right corner. Completely conserved residues are dark blue, low-level variant residues
(,10% divergent from baseline) are light blue, moderately variable residues (10–50%) in orange, and highly variant residues (.50%) in red. (A) 0 days
p.p., (B) 3 days p.p., (C) 59 days p.p., (D) 165 days p.p., (E) 476 days p.p., (F) 1543 days p.p..
doi:10.1371/journal.ppat.1002529.g004
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other positions across the proteome. We observed that the

majority of early viral evolution at days 59 and 165 was indeed

shaped by cellular immune responses, with significantly greater

diversity observed within restricted epitopes (Wilcoxon, p = 0.016;

Figure 6A; Table S4 in Text S1). At day 59, this was most

pronounced in Vif and Nef, with Env and Pol also exhibiting

diversity preferentially within restricted CD8 epitopes by day 165.

These data suggest that rapid adaptation to cellular immune

responses was the major driving force for the early, low frequency

viral evolution observed in subject 9213.

Rapid viral escape from immunodominant acute phase
CD8+ T cell responses

To better understand the early immune adaptation of HIV-1 in

subject 9213, we characterized the breadth and magnitude of

CD8+ T cell responses to all 19 described CD8+ T cell epitopes by

IFN-gamma ELISPOT assay using autologous peptides. Acute

phase (day 59) responses were detected against six epitopes, with

the two most dominant responses directed against the Vif B38-

WI9 (2744 SFC/Mill PBMC) and Nef A24-RW8 (2584 SFC)

epitopes, while weaker subdominant responses were directed

against the Pol B44-EW9 (814 SFC), Rev A01-IY9 (734 SFC), Gag

B44-AW11 (444 SFC), and Gag A01-GY9 (144 SFC) epitopes

(Table S5 in Text S1). The deep sequencing data revealed

evidence of viral adaptation, i.e., escape, within four of the six

epitopes (Figure 7 and Table S6 in Text S1). The escape

phenotype of the observed genetic variants was confirmed by the

impaired recognition of each of the variant’s peptides when tested

in IFN-gamma ELISPOT assays (Table S5 in Text S1).

Viral immune adaptation was most rapid in the dominantly

targeted Vif B38-WI9 and Nef A24-RW8 epitopes, with estimated

escape rates of 0.0987 day21 and 0.0976 day21, respectively

(Figure 6B). Interestingly, we observed distinct adaptive pathways

by which the virus evaded each of these dominant, early responses.

In the Vif B38-WI9 epitope, by day 59 56.6% of the viral

population expressed one of four intra-epitope mutations

(Figure 6C), and/or three flanking mutations likely affecting

antigen processing [35,36]. This initial apparent exploration of

multiple escape pathways resolved over time with over 98% of

sequenced reads from the population now comprising just three

variant ‘‘haplotypes’’ by day 165, before fixing on the I87V

mutation at the C-terminal HLA-class I epitope anchor residue by

day 476 (Figure 7). In contrast, immune adaptation in the Nef

A24-RW8 epitope followed a more restricted pathway with 54.7%

of the quasispecies expressing a single escape mutation (F148L) at

day 59, followed by the emergence of a second escape mutation

(T147M) at day 165 which together comprised .99% of the total

population (Figure 6D). Interestingly, the original F148L mutation

at position 6 of the epitope was replaced by day 476 with the Y144F

mutation, a position 2 HLA-anchor mutation that is likely a more

potent escape mutation. This approximately 50–50 mixed

population of position 2 Y144F and position 5 T147M escape

variants remained stable out to day 1543 (Figure 7). Thus, deep

sequencing during the acute phase of infection revealed rapid viral

Figure 5. Limited evolution in the HIV-1 proteome prior to establishment of viral set point. Sequence diversity is plotted for all evolving
codons in each HIV-1 protein as the percent of sequences with an amino acid residue different from the dominant baseline residue. Colored lines
denote individual evolving amino acid residues within each protein. The time of infection prior to the establishment of viral set point (day 165) is
highlighted in grey.
doi:10.1371/journal.ppat.1002529.g005
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Figure 6. Cellular immune responses drive early low-frequency quasispecies diversity. (A) For each protein, the average frequency of
non-dominant baseline residues of positions within the 19 described CD8 epitopes restricted by subject 9213’s HLA alleles (left) and outside of the 19
described epitopes (right) is plotted for each time point sequenced. Colored lines denote the proteins for which diversity was substantially higher
inside of CD8 epitopes versus outside CD8 epitopes. (B) To determine rates of viral escape for each epitope escape mutations were defined as any
amino acid substitution within the epitope. Symbols denote the cumulative observed frequency of all escape mutations, and lines depict the best fit
by non-linear regression of the observed frequency data to the CTL escape model of Asquith et al. [65]. Open symbols and dashed lines denote
epitopes for which evolution was consistent with reversion. Black symbols and dotted lines denote epitopes for which there was no evidence of
escape. CD8 responses against each epitope are shown in parentheses in the legend and were measured by IFN-gamma Elispot assay (Spot Forming
Cells/Mill PBMC (SFC)). (C) Frequency of wild-type (black) and variant (red) haplotypes of the Vif B38-WI9 epitope and flanking regions over time.
Shown at the top is the clade B consensus sequence for reference. (D) Frequency of wild-type (black) and variant (red) haplotypes of the Nef A24-RW8
B38-WI9 epitope and flanking regions over time. Blue residues highlight differences between the day 0 transmitted sequence and HIV-1B consensus
sequence.
doi:10.1371/journal.ppat.1002529.g006
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escape from the two most dominant acute phase CD8+ T cell

responses, in some cases through the combined effects of multiple

low frequency variants that would be missed by traditional bulk

sanger sequencing. Interestingly, in both cases the early escape

mutations were ultimately replaced in the viral population by HLA

anchor position mutations that more efficiently escaped immune

recognition (Table S5 in Text S1), presumably through

reductions in MHC-I:peptide binding at the cell surface.

Slower rate of escape from subdominant CD8+ T cell
responses

Viral escape was also observed in the Pol B44-EW9 and Gag

A01-GY9 epitopes (Figure 7 and Table S6 in Text S1) that

were targeted by subdominant acute-phase CD8+ T cell responses

of 814 SFC and 144 SFC, respectively (Table S5 in Text S1).

Here, the lower magnitude of these responses was associated with

slower estimated escape rates of 0.0133 and 0.0036 day21

(Figure 6B). In both cases, early, low frequency mutations at

positions 4 and 6 of these epitopes at day 165, likely T cell receptor

(TCR) escape mutations, were subsequently replaced by HLA-

anchor mutations at position 2 or 9. These data provide insight

into possible mechanisms underlying the transient variation of

some residues observed in Figure 5, whereby early mutations are

being out competed by more effective secondary mutations.

Finally, the two other epitopes that were targeted during acute

infection, Rev A01-IY9 (734 SFC) and Gag B44-AW11 (444 SFC),

exhibited no evidence of immune escape over the course of

infection despite the higher sensitivity of deep sequencing

(Figure 7 and Table S6 in Text S1).

In addition to the six epitopes targeted during acute infection,

weak CD8+ T cell responses were also detected against four other

epitopes during the chronic phase of infection (day 476): Env Cw4-

SF9 (190 SFC), Env A24-RL9 (84 SFC), Env A01-RY9 (80 SFC),

and Nef A01-YT9 (70 SFC) (Table S5 in Text S1). There was

evidence of viral escape in the three Env epitopes (Figure 7 and
Table S6 in Text S1), but similar to the epitopes targeted by

subdominant acute phase responses, the rate of escape in these

Figure 7. Viral escape from acute and chronic phase CD8+ T cell responses. Stacked heat-maps illustrate variant codon frequencies over
time for each residue of the CD8 epitopes targeted by subject 9213. Shown are epitopes targeted during the acute (Day 59) and chronic (Day 476)
phases of HIV-1 infection. The baseline sequence is shown at the top of each epitope, with non-HIV-1B consensus residues highlighted in blue. The
magnitude of each response is shown in SFC per million PBMC.
doi:10.1371/journal.ppat.1002529.g007
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chronically targeted epitopes was slow at 0.0067, 0.0087, and

0.0026 day21 respectively (Figure 6B). Overall, the virus escaped

from four of the six CD8+ T cell responses mounted during the

acute phase of infection and three of the four CD8+ T cell

responses mounted during chronic infection, with highly variable

rates of escape observed for different epitopes.

Correlation between CD8+ T cell immunodominance and
rate of escape

In subject 9213, we found that the rate of immune escape from

acute phase CD8+ T cell responses correlated with the magnitude

of these responses (p = 0.01), reflecting the differential selective

pressure imposed on the viral population by distinct CD8+ T cell

responses. Interestingly, greater than 50% of the viral population

had escaped the dominantly targeted Vif B38-WI9 and Nef A24-

RW8 epitopes by 59 days post-presentation, which corresponds

temporally to the plateauing of the precipitous decline from peak

viremia and the subsequent equilibration of viral load (Figure 3A).

Thus, these data from a single subject suggest that the rate at

which the virus escapes from critical acute phase immunodomi-

nant responses, in some cases through the combined effects of

multiple low frequency mutations, may influence the magnitude of

the drop from peak viremia and duration of effective early

immune control, and by extension set-point viral load.

Low frequency escape mutations are associated with
variant-specific CD8+ T cell responses

We have previously observed that CD8+ T cell responses can

arise that are capable of recognizing CTL escape variants [37–39],

demonstrating that the immune system is at least partially able to

contend with immune escape. To investigate the kinetics of such

variant-specific responses, and whether they might be triggered by

early, low frequency mutations arising during the acute phase of

infection, we screened for responses against the most frequent

escape variants in the rapidly escaping Vif B38-WI9 and Nef A24-

RW8 epitopes. As early as day 59, strong responses were detected

against two of the primary escape variants in the Vif B38-WI9

epitope, despite the fact that the S86A and I87V mutations

comprised less than 15% of the viral quasispecies (Figure 8A;
Table S5 in Text S1). These variant-specific responses persisted

out to day 476, and as we have previously observed in chronic

infection were equal in magnitude to the autologous wild-type

response [38]. However, fixation in the epitope of the C-terminal

I87V mutation, likely impairing MHC-I binding and presentation,

ultimately coincided with a significant (.10-fold) decline of both

wild-type and the variant-specific responses by day 661. We also

detected early responses to escape variants in the Nef A24-RW8

epitope, albeit at much lower magnitudes, and similarly the

emergence of an HLA anchor position escape mutation (Y144F)

ultimately abrogated responses against both wild-type and variant

peptides (Figure 8B; Table S5 in Text S1). This early

recognition of the low-frequency escape variants, followed by loss

of responses upon outgrowth of HLA anchor mutations, suggests

partial cross-recognition of early escape variants by the wild-type-

specific response [40] rather than development of de novo variant-

specific responses [37]. Thus, eventual loss of the wild-type

sequence, required for continuous expansion of these wild-type-

specific responses, results in the eventual decline of all responses.

Thus, these data extend earlier reports of the ability of CD8+ T

cell responses to recognize viral escape mutations [37–40] by

illustrating the ability of early responses to recognize low frequency

escape mutations and providing a mechanism for the observed

substitution of early escape mutations with more potent secondary

HLA-anchor mutations.

Reversion of transmitted escape mutations primes CD8+
T cell responses

Apart from the evolution in the targeted CD8 epitopes

described above, we also observed substantial evolution in four

other non-targeted CD8 epitopes restricted by subject 9213’s HLA

alleles (Nef A01-WH10, Env B44-AY10, Gag A24-KW9, and Gag

B44-LY9; Table S7 in Text S1). Responses were never detected

against these epitopes during either acute (day 59) or chronic (day

476 and day 661) infection despite testing with autologous peptides

matching the founder virus (Table S5 in Text S1). Each of these

evolving epitopes was found to contain one or more transmitted

mutations at baseline (day 0), with the observed evolution

consistent with the reversion of these transmitted mutations back

towards the HIV-1B consensus sequence. Reversions in the Nef

A01-WH10 and Env B44-AY10 epitopes occurred with estimated

rates of 0.0722 and 0.0887 day21 (Figure 9A), respectively, nearly

equaling those of the most rapidly escaping Vif B38-WI9 and Nef

A24-RW8 epitopes (Figure 6B). Reversion in the Gag A24-KW9

epitope was actually the result of the transmission and reversion of

Figure 8. Variant-specific CD8+ T cell Elispot responses. Elispot responses in Spot Forming Cells (SFC) per million PBMC to wild-type and
variant peptides for the two dominant epitopes (A) Vif B38-WI9 (WHLGQGVSI) and (B) Nef A24-RW8 (RYPLTFGW). Bars in black denote responses to
clade B consensus epitopes. Bars in red, orange, and pink denote responses to epitopes containing escape variants.
doi:10.1371/journal.ppat.1002529.g008
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a K28Q mutation that is a well-described escape mutation in the

overlapping A03-RK9 epitope [35,41]. Interestingly, founder virus

mutations reverted in three additional HLA-A03 epitopes (Pol-

ATK9, Pol-QK9, and Vif-RK10), and two HLA-B57 epitopes (Vif

B57-IF9 and Nef B57-YY9), suggesting that the founder virus in

subject 9213 had previously adapted to both HLA-A03 and B57

immune responses (Figure 9A; Table S8 in Text S1). Reversion

of other well-described escape mutations such as I293T in the Pol

B51-TI8 epitope [41,42] and I63T in the Vpr A02-AL9 epitope

[43] was also detected. In total, 15% (56/373) of all transmitted,

non-consensus mutations exhibited evolution consistent with

reversion over the four years of follow-up (Figure 9B). Thus,

the increased sensitivity afforded by the longitudinal deep

sequencing data revealed that not only is reversion of transmitted

mutations a significant contributor to the evolution of HIV-1, but

that these mutations revert at vastly different rates implying

significantly different impacts of each mutation on viral replication

capacity.

As a result of these findings we undertook a closer examination

of the evolution within the ten targeted CD8 epitopes. Transmit-

ted mutations at baseline were in fact present in five of these

epitopes (Table S6 in Text S1), with evolution in two of the

chronically targeted epitopes consistent with the reversion of

transmitted mutations. In the Env A01-RY9 epitope, despite the

fact that CD8+ T cell responses were not detected until day 476, as

early as day 59 low frequency mutations developed at the residues

containing transmitted mutations (Figure 7, Table S6 in Text
S1). In line with the hypothesis that the early evolution in this

epitope may have represented reversion of transmitted mutations,

we first detected low magnitude (70 SFC) immune responses

against this Env A01-RY9 epitope at day 476 following partial

outgrowth of the HIV-1B consensus residue (R794 at 9%; Tables
S5 and S6 in Text S1). Similarly, in the other late-targeted Env

A24-RL9 epitope we observed partial reversion (20%) towards

consensus of another transmitted mutation (K593R) at day 476,

which was also associated with the late development of a low

magnitude (84 SFC) response against the wild-type form of the

epitope (Table S5 and S6 in Text S1). Thus, while the

transmission of mutations within some CD8 epitopes restricted by

subject 9213 prevented the mounting of early immune responses

to these epitopes, the reversion of transmitted mutations, even at

very low frequencies, was sufficient to enable the priming of

immune responses to these epitopes.

Discussion

We have established a high-throughput deep sequencing

platform to assess HIV-1 sequence diversity across the entire

HIV-1 genome. As the result of developing novel sequence

assembly and variant detection algorithms, we were able to rapidly

produce deep sequence data for a diverse set of 89 clade B clinical

isolates and to dissect the evolutionary dynamics of HIV-1 during

the earliest stages of acute infection. Our results from an in-depth

analysis of a single subject reveal that the majority of early, low

frequency mutations arising during the acute phase of infection

reflect adaptation to host CD8+ T cell responses. Moreover, the

temporal link observed between interruption of the decline in peak

viremia and escape from the most immunodominant CD8+ T cell

responses through low-frequency mutations suggests that the rate

of escape from a few key acute phase CD8+ T cell responses may

strongly influence primary control of HIV-1, and potentially viral

set point. Thus, immune control during acute HIV-1 infection

may be substantially influenced by early viral adaptations not

detected by conventional sequencing approaches.

The central role of cellular immune responses in the early control

of HIV-1 is highlighted by our findings that across the viral

proteome the majority of early, low frequency adaptive mutations in

subject 9213 were associated with CD8+ T cell responses. These

data support the substantial selective pressure exerted upon HIV-1

by these responses early after infection. While limited sample

Figure 9. Reversion of transmitted mutations over the course of infection. (A) Rates of reversion of transmitted mutations within both
restricted and unrestricted CD8 epitopes in subject 9213. Reversion was defined as the replacement of a transmitted non-consensus residue by the
HIV-1B consensus residue. Symbols denote the observed frequency of viruses expressing the consensus residue and lines depict the best fit by non-
linear regression of the observed frequency data to the CTL escape model of Asquith et al. [65]. Closed symbols and solid lines denote epitopes
restricted by subject 9213, while open symbols and dashed lines denote epitopes not restricted by 9213. Listed in parentheses are the mutations listed
by the consensus residue, HXB2 position, followed by the transmitted mutation, i.e., F197S. (B) Rates of reversion of all transmitted mutations
exhibiting sequence variation over the course of infection. Each line represents a different mutation.
doi:10.1371/journal.ppat.1002529.g009
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availability precluded an analysis of CD4+ T cell responses, none of

the rapidly evolving sites in subject 9213 arose exclusively within

described CD4 T cell epitopes. While this does not exclude the

possibility of CD4 escape, our data were not able to directly identify

any evidence of CD4 escape. Recent studies have illustrated that

HIV-specific CD8+ T cell responses are guided by distinct

immunodominance hierarchies, whereby certain responses consis-

tently arise more rapidly during the acute phase of infection, and

can even dominate responses restricted by other HLA alleles

[44,45]. The two most immunodominant described B38- and A24-

restricted epitopes, Vif B38-WI9 and Nef A24-RW8, were also

found to be immunodominant in subject 9213. Moreover, they also

represented the most rapidly escaping epitopes, with the kinetics of

viral escape in subject 9213 corresponding in general to the

hierarchy of all CD8+ T cell responses at baseline. These data

support a strong link between the strength of a response and the

relative selection pressure exerted, in line with recent data by Ferrari

et al. [46]. More importantly, the observation that cessation of the

rapid decline from peak viremia in subject 9213 was temporally

coincident with viral escape from these two most immunodominant

CD8+ T cell responses suggests that the duration of effectiveness of

such immunodominant responses may be critical to the successful

containment of early viral replication and prolonged viral load

decline. Thus, the rate at which the earliest immunodominant

CD8+ T cell responses are lost through viral escape may

substantially influence the establishment of viral load set point,

and thus progression to AIDS [47]. Unfortunately, with the

exception of a few protective HLA alleles, the majority of

immunodominant CD8 epitopes occur within more variable regions

of the virus that would be expected to escape rapidly because they

impart little or no viral fitness cost. As such, our data revealing that

combinations of low frequency adaptive amino acid mutations may

critically impact early control of HIV-1 by subverting the key CD8+
T cell responses may help to explain the inability of most HLA

alleles to fully suppress early viral replication.

Characterization of the molecular pathways of viral escape is

central to the rational design of a durable T-cell based vaccine.

The sensitivity of our approach revealed a common pattern of

evolution within the majority of escaping epitopes, including both

immunodominant and subdominant responses, in which combi-

nations of multiple low frequency escape mutations were replaced

over time by HLA-anchor mutations. CD8+ T cell responses

specific for the earlier escape variants were associated with

selection of these ‘‘secondary’’ escape mutations that were

substantially more effective in abrogating CTL recognition. These

data, and prior reports of variant-specific responses [37–40], reveal

the efficacy of these variant-specific responses, and suggest a

potentially more important role for these responses in the control

of HIV-1. It is important to note, however, that while some studies

have carefully demonstrated the ability of the immune response to

recognize CTL escape variants using tetramers and peptide

dilutions [37–39], other studies have found that the high peptide

concentrations often used to detect cross-reactive responses to

variants can be misleading since the peptide levels are often

substantially higher than physiological levels [48,49]. Unfortu-

nately, a lack of sample availability at the early time points when

these responses were robust prevented the testing of mutant and

autologous peptides at additional dilutions. Therefore, it will be

important in future studies to examine the recognition of these

types of early CTL escape mutations using physiological peptide

concentrations of peptides, or point-mutant strains of HIV-1 so

that the mutant epitopes can be naturally processed and presented

at the cell surface at physiological levels. Nonetheless, these data

exemplify the continuous nature of host-virus co-adaptation and

suggest the need to consider these early transient escape mutations

when designing vaccine immunogens. For example, mosaic

immunogen approaches [50,51], designed to impede viral escape

by inducing responses against early escape mutations, may benefit

from inclusion of these transient low frequency variants that are

likely absent from the larger chronic sequence datasets upon which

mosaic vaccine antigens are based. Similarly, these deep sequence

data provide greater insight into the critical role of compensatory

mutations, whereby viral escape within structurally interacting

regions of a protein requires one or more co-evolving secondary

mutations to retain protein structure and function [10,52,53]. In

the Nef A24-RW8 epitope, eventual development of the position 2

HLA-anchor mutation (Y144F) was tightly linked to an upstream

I142T mutation, exclusively present on the haplotype expressing

the escape mutant (Figure 6D). Thus, supplementing existing

HIV-1 sequence databases with deep sequence data from both

acute and chronically infected individuals may help to identify

regions of HIV-1 which require co-evolving sites to escape [54]

and thus would be most susceptible to immune targeting [55,56].

Transmitted escape mutations can also influence the course of

infection both by impairing the induction of CD8+ T cell

responses [35,43,57], but also by attenuating viral replication

capacity [58,59]. Importantly, the rate at which transmitted

mutations revert may serve as a more accurate in vivo measurement

of the relative impact of these mutations on viral fitness, as

compared to in vitro viral fitness measurements [10]. The range of

reversion rates of transmitted mutations observed in this genome-

wide study (0.0887 to 0.0015 day21), including some that were

very rapid, supports a significant impact of some of these

mutations on viral replication capacity. The ability to more

accurately determine the true rates of genome-wide reversions

using the more sensitive deep sequencing data provides the unique

opportunity to now systematically quantify the contribution of

transmitted mutations on viral fitness, which may provide

additional insight into the potentially significant contribution of

viral genotype to HIV-1 set-point viral load [60].

The deep sequencing approach presented here yields results

consistent with those of traditional cloning or SGA. A recent study

by Jordan et al illustrates similar results for sequence diversity

detection between standard PCR/cloning and SGA [61]. While

improving upon the sensitivity of these methods, and providing the

ability to simultaneously assay genetic diversity across all residues

in the genome, our variant detection methods achieve a sensitivity

and specificity of .97% at a substantially reduced cost as

compared to SGA or cloning. Despite this high accuracy, as with

other sequencing approaches, deep sequencing has its own set of

limitations. First, despite efforts to optimize read alignments, mis-

alignments can occur especially at the ends of amplicons and reads

and lead to false positives; V-phaser is designed to limit false

positives and Macalalad et al. (manuscript submitted) have shown

that the variant detection methods described here achieve a

positive predicted value (PPV) of 98%. Second, 454 deep

sequencing is constrained in its ability to identify long-range

linked mutations beyond a single read length of approximately

400 bp. When compared to SGA, this may limit its utility to

understand more complex haplotype interactions, such as whether

escape mutations in two simultaneously escaping eptiopes are

arising upon the same viral haplotype [7], or upon distinct viral

haplotypes which later recombine [38]. Here, deep sequencing

approaches and SGA may well serve to complement their

respective individual strengths. Third, the bulk amplified PCR

products used for this deep sequencing approach may be more

prone to in vitro recombination events than the single-template

amplifications used during SGA [62]. While this is unlikely to alter
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the frequency of variants detected by deep sequencing, it could

limit the ability to accurately assess in vivo recombination rates and

longer viral haplotypes. However, since both bulk amplification

and SGA approaches rely on the bulk reverse transcription (RT) of

RNA to cDNA, which itself may be prone to in vitro recombination

[63], both deep sequencing and SGA approaches may still be

susceptible to recombination events. Finally, given the ability to

routinely sequence the viral quasispecies at near unlimited depth

the issue of template resampling may be a concern. In subject 9213

we quantified the number of input RNA template molecules used

for each cDNA synthesis. In each case the number of template

molecules (.1000 RNA copies) was greater than the fold depth of

sequence data achieved (5356325 reads), arguing against template

resampling having unduly influenced our findings. Supporting this

conclusion is the congruence in variants and variant frequencies

observed across 454, clonal, and SGA data sets (see Figure 2, and

Supplementary Results in Text S1).

The accuracy of the deep sequencing methods described here to

identify variable and conserved sites are further confirmed by

comparison of the diversity detected within individual patients to

that observed in the global HIV-1 population. As shown in

Figure S2 in Text S1, which illustrates diversity plots for the 89

clade B clinical isolates, consistent diversity ‘‘hotspots’’ were

observed in each protein, including the 59 (p17) and 39 (p15)

regions of Gag and the V1–V3 loops of Env. Notably, sites that

frequently exhibited high intra-patient diversity were more likely

to be highly polymorphic in consensus sequences of circulating

strains when compared both across the whole genome (Wilcoxon,

p,0.0001) and within any gene (Wilcoxon, p,0.01). Conversely,

28 residues were entirely conserved in both the intra-patient and

global datasets. Such data support the accuracy of the deep

sequencing methods and also provide a comprehensive view of the

extent of genome-wide intra-host sequence diversity achieved

during chronic HIV-1 infection, revealing that sites commonly

susceptible to intra-host diversity contribute directly to the

diversity observed between circulating strains.

The development of a robust genome-wide HIV-1 deep

sequencing approach provides both the means to rapidly produce

whole genome data for large cohorts and a unique opportunity to

sensitively and globally profile HIV-1’s earliest adaptations to host

immune pressures. Genome-wide diversity profiles may serve as a

sensitive and effective readout of host immunity during both natural

infection, but also following vaccination such as in the case of

breakthrough subjects from the HIV-1 STEP trial [64]. Our analysis

of early sequence evolution in a single subject indicates that a small

number of early specific CD8+ T cell responses represent the major

selective force being evaded when peak HIV-1 viremia first comes

under control. Extending these results to larger cohorts of

individuals, especially in subjects naturally controlling HIV-1

following acute infection, would support a critical role for the

maintenance of a few key CD8+ T cell responses in the critical

control of HIV-1. If so, vaccine strategies aimed at triggering

immunodominant responses against critical regions of the virus may

prove more effective than efforts attempting to maximize the breadth

or polyfunctionality of vaccine-elicited CD8+ T cell responses [55].

Materials and Methods

Ethics statement
All subjects gave written informed consent and the study was

approved by the Massachusetts General Hospital Review Board.

Study subjects
Plasma samples were obtained from HIV-1 cohorts at the

Massachusetts General Hospital in Boston, Massachusetts, the

Jessen-Praxis in Berlin, Germany and the HIV Swiss Cohort.

Subject 9213 was identified during primary HIV-1 infection

(Western Blot negative; Fiebig II–III) [29], and time points are

defined from day of presentation with symptomatic acute HIV-1

infection. High and intermediate-resolution HLA class I genotyp-

ing was performed by sequence-specific PCR and direct

sequencing according to standard procedures.

See Text S1 for a detailed description of sample preparation,

library construction, and sequencing protocols, as well as a

description of the genome assembly and variant detection

algorithms and their validation.

Supporting Information

Text S1 Supplementary document containing detailed materials

and methods as well as supplementary results, tables and figures.

(DOC)
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