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A COROLLARY OF THE B-FUNCTION LEMMA

A. BEILINSON AND D. GAITSGORY

1. The statement

1.1. Let X be a smooth algebraic variety over an algebraically closed field k of
characteristic 0. Let f be a function on X ; let Y be the locus of zeros of f , and
j : U →֒ X the open embedding of the complement of Y . Let DX be the sheaf of
differential operators on X , and let M be a holonomic (left) D-module on U .

Let us tensor DX with the ring of polynomials in one variable k[s]. I.e., let us con-
sider the sheaf DX [s], and the corresponding category of (left) DX [s]-modules (we
follow the conventions in the theory of D-modules, where we only consider sheaves
of DX - or DX [s]-modules that are quasi-coherent as sheaves of OX -modules).

Consider now the DU [s]-module “f s”. By definition, as OU [s] module, it is free
of rank one with the generator that we denote f s, and vector fields acting on it by
the formula

ξ(f s) = s · ξ(f) · f s−1,

where f s−1 := f−1 · f s.

Consider the DU [s]-module M⊗ “fs” := M ⊗
OU

“f s”, and the DX [s]-module

j∗(M⊗ “f s”).

It is easy to see that in general j∗(M ⊗ “f s”) is not finitely generated as a DX [s]-
module:

Example. Consider X = A1 := Spec(k[t]), f = t, M = OX . Let M̃ be the DX [s]-
submodule of j∗(“f

s”), generated by the section f s. It is easy to see that we have
an isomorphism

j∗(“f
s”)/M̃ ≃ ⊕

n=0,1,2,...

(
δ0 ⊗ (k[s]/s− n)

)
,

where δ0 is the δ-function at 0 ∈ A1, thought of as a left D-module on A1, and
n ∈ N is regarded as a point of k ⊂ Spec(k[s]).

1.2. The goal of this note is to describe the set V(M) of all DX [s]-submodules

M̃ ⊂ j∗(M ⊗ “f s”), such that j∗(M̃) = M ⊗ “f s”, and the subset Vf (M) ⊂ V(M)

that corresponds to those M̃ that are finitely generated as DX [s]-modules.

For M̃ ∈ V(M) and a point λ ∈ k ⊂ Spec(k[s]) consider the DX -module M̃λ :=

M̃/(s− λ). We have the canonical maps

j!(M ⊗ “fλ”) → M̃λ → j∗(M⊗ “fλ”),

where M⊗ “fλ” := M ⊗
OU

“fλ” denotes the corresponding D-module over U .
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2 A. BEILINSON AND D. GAITSGORY

To state our main result, we shall adopt the following conventions. By an arith-
metic progression in k we shall mean a coset of k modulo Z. Let Λ ⊂ k be a subset
equal to union of finitely many arithmetic progressions. We say that some property
of an element of Λ holds for λ ≫ 0 (resp., λ ≪ 0), if it holds for elements of the
form λ0+n for any fixed λ0 ∈ Λ, whenever n ∈ Z is sufficiently large (resp., small).

We now are ready to state our theorem:

Theorem 1. There exist a subset Λ ⊂ k equal to the union of finitely many arith-

metic progressions such that for any M̃ ∈ Vf (M) we have:

(1) For λ /∈ Λ the maps

j!(M⊗ “fλ”) → M̃λ → j∗(M ⊗ “fλ”)

are isomorphisms. In particular, M̃λ ≃ j!∗(M⊗ “fλ”).

(2) For λ ∈ Λ with λ ≪ 0, the map M̃λ → j∗(M⊗ “fλ”) is an isomorphism.

(3) For λ ∈ Λ with λ ≫ 0, the map j!(M⊗ “fλ”) → M̃λ is an isomorphism.

Note that assertion of the theorem provides an algorithm for computing j!(M).

Namely, we must pick any finitely generated submodule M̃ ⊂ j∗(M ⊗ “f s”), such

that j∗(M̃) ≃ M⊗ “f s”, and

j!(M) ≃ M̃/s− n

for a sufficiently large integer n.

2. A reformulation

2.1. We shall derive Theorem 1 from a slightly more precise assertion. Before
stating it, let us recall the following result, which is a well-known consequence
of the b-function lemma (the proof will be recalled for completeness in the next
section).

In what follows, if P is a module over k[s] and λ is an element of k ⊂ Spec(k[s]),
we shall denote by P(λ) the localization of P at the corresponding maximal ideal,
i.e., s− λ.

We are going to study DX [s](λ)-submodules M̃(λ) ⊂ j∗(M ⊗ “f s”)(λ) such that

j∗(M̃(λ)) = (M⊗ “f s”)(λ). We shall denote this set by V(M(λ)).

Theorem 2. For any λ ∈ k the following holds:

(A) The DX [s](λ)-module j∗(M⊗ “f s”)(λ) is finitely generated. Denote it M̃max
(λ) .

(B) The set V(M(λ)) contains the minimal element. Denote it M̃min
(λ) . Moreover,

we have:

(B.1) The quotient M̃max
(λ) /M̃min

(λ) is (s− λ)-torsion.

(B.2) The natural map j!(M⊗ “fλ”) → (M̃min
(λ) )/s− λ is an isomorphism.

(C) There exists a subset Λ ⊂ k equal to the union of finitely many arithmetic

progressions such for λ /∈ Λ, M̃min
(λ) = M̃max

(λ) .



A COROLLARY OF THE B-FUNCTION LEMMA 3

2.2. The strengthening of Theorem 1 mentioned above reads as follows:

Theorem 3. Let Λ be as above, and let M̃ be an element of V(M).

(I) For λ /∈ Λ, the maps

M̃
min
(λ) → M̃(λ) → M̃

max
(λ)

are isomorphisms.

(II) The map M̃(λ) → M̃max
(λ) is an isomorphism for all λ ∈ Λ that are ≪ 0.

(III) The element M̃ belongs to Vf (M) if and only if the map M̃min
(λ) → M̃(λ) is an

isomorphism for all λ ∈ Λ that are ≫ 0.

2.3. Let us first see some obvious implications. First, point (C) of Theorem 2
implies point (I) of Theorem 3. Combined with point (B.2) of Theorem 2, point (I)
of Theorem 3 implies point (1) of Theorem 1.

Point (II) of Theorem 3 implies point (2) of Theorem 1. Point (III) of Theorem 3,
combined with point (B.2) of Theorem 2 implies point (3) of Theorem 1.

Finally, the ”only if” direction Theorem 3(III), combined with point (A) of The-
orem 2, implies the ”if” direction.

Furthermore, we have the following corollaries:

Corollary 1. Specifying an element M̃ ∈ V(M) is equivalent to specifying, for

each λ ∈ Λ, of an element M̃(λ) ∈ V(M(λ)), such that M̃(λ) = M̃max
(λ) for all λ that

are ≪ 0.

Corollary 2. Let M̃1 and M̃2 be elements of Vf (M). Then the localizations M̃1
(λ)

and M̃2
(λ) coincide for all but finitely many elements λ ∈ k.

2.4. We shall now give a description of the set V(M(λ)), appearing in Corollary 1,
in terms of a vanishing cycles datum. With no restriction of generality, we can
assume that λ = 0.

Recall that Sect. 4.2 of [2] identifies the quotient M̃max
(0) /M̃min

(0) , which is a

DX [s](0)-module set-theoritically supported on Y = X − U , with the D-module

Ψnilp(M) of nilpotent nearby cycles of M, with the action of s on it being the
nilpotent ”logarithm of monodromy” operator.

Thus, elements N of V(M(0)) are in bijection with s-stable DX -submodules

K ⊂ Ψnilp(M).

For each K as above, let us describe more explicitly the corresponding DX -
module N0 := N/s. By [1], N0 is completely determined by the corresponding
D-module of vanishing cycles Φnilp(N0), together with maps

Ψnilp(M)
c

→ Φnilp(N0)
v

→ Ψnilp(M),

such that the composition v ◦ c : Ψnilp(M) → Ψnilp(M) equals s.

It is easy to see that Φnilp(N0) is given in terms of K by either of the following
two expressions:

coker
(
K

ι⊕s
−→ Ψnilp(M)⊕K

)
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or

ker
(
Ψnilp(M)/K⊕Ψnilp(M)

s⊕π
−→ Ψnilp(M)/K

)
,

where ι : K →֒ Ψnilp(M) and π : Ψnilp(M) → Ψnilp(M)/K are the natural embed-
ding and projection, respectively. The above kernel and co-kernel are identified by
means of the map Ψnilp(M) ⊕ K → Ψnilp(M)/K ⊕ Ψnilp which has the following
non-zero components:

−s : Ψnilp(M) → Ψnilp(M); ι : K → Ψnilp(M); π : Ψnilp(M) → Ψnilp(M)/K.

The map c is the composition

Ψnilp(M) → Ψnilp(M)⊕K → Φnilp(N0),

and the map v is the composition

Φnilp(N0) → Ψnilp(M)/K⊕Ψnilp(M) → Ψnilp(M).

We note that the !-restriction of N0 to Y is then

Cone(Ψnilp(M)/K
s
→ Ψnilp(M)/K)[−1],

and the *-restriction of N0 to Y is Cone(K
s
→ K).

3. Proofs

3.1. As all statements are local, we can assume that X is affine. First, let us recall
the statement of the usual b-function lemma:

Lemma 1. (J. Bernstein) Let M be as in Sect. 1.1, and let m1, ...,mn be generators

of M as a DU -module. Then there exist elements Pi,j ∈ DX [s] and an element

b ∈ k[s] such that for every i

Σj Pi,j(mj ⊗ f s) = b · (mi ⊗ f s−1).

Let us deduce some of the statements of Theorems 2 and 3:

3.2. First, it is clear that for λ ∈ k and n ∈ Z such that
(
(λ− n)− N

)
∩ roots(b) = ∅,

the elements mi⊗f s−n generate j∗(M⊗“f s”)(λ) as a DX [s](λ)-module. This implies
point (A) of Theorem 2.

Set

Λ = Z+ roots(b).

Point (C) of Theorem 2 and point (II) of Theorem 3 follow as well.

3.3. Note that we also obtain that the DX ⊗k(s)-module j∗(M ⊗ “f s”) ⊗
k[s]

k(s)

does not have proper submodules, whose restriction to U is (M⊗ “f s”) ⊗
k[s]

k(s).

This proves point (B.1) of Theorem 2 modulo the existence of M̃min
(λ) .
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3.4. To prove point (B) of Theorem 2 and the remaining ”only if” direction of
Theorem 3(III), we shall use a duality argument.

Let A be a localization of a smooth k-algebra (we shall take A to be either k[s]
or k[s](λ), or k(s)). Let n = dim(X). Consider the ring DX ⊗A.

Let Db
coh(DX ⊗A-mod) (resp., Db

coh(mod-DX ⊗A)) denote the bounded derived
category of left (resp., right) DX ⊗A-modules with coherent cohomologies.

Consider the contravariant functor

DA : Db
coh(DX ⊗A-mod) → Db

coh(DX ⊗A-mod),

defined by composing the contravariant functor

M 7→ RHom(M,DX ⊗A),

which maps

Db
coh(DX ⊗A-mod) → Db

coh(mod-DX ⊗A),

followed by tensor product with ω−1
X [n] that maps Db

coh(mod-DX ⊗A) back to
Db

coh(DX ⊗A-mod). The same argument as in the case of usual D-modules shows
that DA ◦ DA ≃ Id.

We have the following basic property of the functor DA: let A → B be a homo-
morphism between k-algebras, and let N be an object of Db

coh(DX ⊗A-mod). We
have:

(1) DB

(
B

L
⊗
A
N

)
≃ B

L
⊗
A
DA(N).

In particular, for M ∈ Db
coh(DX -mod), we have DA(M⊗A) ≃ D(M)⊗A, where

D denotes the usual duality on Db
coh(DX -mod).

3.5. First, let us note that Dk[s](M ⊗ “f s”) is acyclic off cohomological degree 0,
and

Dk[s](M⊗ “f s”)
σ
≃ D(M)⊗ “f s”,

where σ means that the action of k[s] on the two sides differs by the automorphism
σ : k[s] → k[s], σ(s) = −s.

Let now N be an element of V(M(λ)); in particular, N is finitely generated over
DX [s](λ) by Theorem 2(A). We shall prove:

Lemma 2.

(a) The DX [s](λ)-module Dk[s](λ)
(N) is concentrated in cohomological degree zero.

(b) The canonical map

Dk[s](λ)
(N) → j∗

(
Dk[s](λ)

(
(M ⊗ “f s”)(λ)

)) σ
≃ j∗(D(M)⊗ “f s”)(−λ)

is an injection.

For the proof of the lemma see Sect. 3.7 below.
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3.6. End of proofs of the theorems. The above lemma implies point (B) of
Theorem 2 and the ”if” direction in Theorem 3(III):

For point (B) of Theorem 2, the sought-for submodule M̃
min
(λ) is given by

Dk[s](λ)

(
j∗(D(M)⊗ “f s”)(−λ)

)
.

Point (B.2) follows from equation (1).

For a finitely generated submodule M̃ as in point (III) of Theorem 3, the map

M̃
min
(λ) → M̃(λ)

is an isomorphism whenever the corresponding map

(Dk[s](M̃))(−λ) → j∗(D(M)⊗ “f s”)(−λ)

is an isomorphism.

3.7. Proof of Lemma 2. We shall use the following corollary of Lemma 1, estab-
lished in [3]:

Corollary 3. The DX ⊗k(s)-module j∗(M⊗ “f s”) ⊗
k[s]

k(s) is holonomic.

From the corollary, we obtain that non-zero cohomologies of Dk[s](λ)
(N) are s-

torsion. Hence, to prove point (a), it is enough to show that

(2) k
L
⊗

k[s](λ)

Dk[s](λ)
(N)

is acyclic off cohomological degree 0.

This acyclicity would also imply that Dk[s](λ)
(N) has no s-torsion. Combined

with Sect. 3.3, this would imply point (b) of the lemma as well.

Using isomorphism (1), the acyclicity of (2) is equivalent to k
L
⊗

k[s](λ)

N =: Nλ

being holonomic. The latter is true for N = j∗(M ⊗ “f s”)(λ), since in this case

Nλ ≃ j∗(M ⊗ “fλ”), which is known to be holonomic.

For any N we argue as follows. We note that j∗(M ⊗ “f s”)(λ)/N, being finitely
generated over DX ⊗k[s](λ) and (s−λ)-torsion, is finitely generated over DX . Since
(j∗(M⊗ “f s”)(λ)/N)/s−λ is holonomic, being a quotient of j∗(M⊗ “f s”)(λ)/s−λ,
we obtain that j∗(M ⊗ “f s”)(λ)/N is itself holonomic as a DX -module.

We have a map

Nλ → j∗(M⊗ “fλ”),

whose kernel and cokernel are subquotients of j∗(M ⊗ “f s”)(λ)/N, which implies
that Nλ is holonomic as well.

�
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3.8. An alternative argument. We can prove that Dk[s](λ)
(N) lies in cohomolog-

ical degree 0 directly, without quoting Corollary 3. Namely, we have the following
general assertion that follows from the usual Nakayama lemma:

Lemma 3. Let B be a filtered k-algebra such that gr(B) is a commutative finitely

generated algebra over k. Let R be a localization of a commutative finitely generated

k-algebra at a maximal ideal m. Then if P is a finitely generated R⊗B −module,
such that P/m · P = 0, then P = 0.

Hence, Lemma 3 implies that the acyclicity of (2) implies that Dk[s](λ)
(N) lies in

cohomological degree 0, i.e., point (a) of Lemma 2.

In particular, we can apply Lemma 2(a) to j∗(M⊗“f s”), and isomorphism (1) to

the homomorphism k[s] → k(s). We conclude that Dk(s)

(
j∗(M⊗ “f s”) ⊗

k[s]
k(s)

)

lies in cohomological degree 0, i.e., that j∗(M ⊗ “f s”) ⊗
k[s]

k(s) is holonomic. This

reproves Corollary 3.
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